GHOFUR, ABDUL (2018) Sentimen Analisis Media Sosial Twitter Menggunakan Library Sastrawi Terhadap Customer Care dengan Algoritma Lexicon Based. S1 thesis, Universitas Mercu Buana Bekasi.
|
Text
1.Halaman Judul.pdf Download (49kB) | Preview |
|
|
Text
2.Abstrak.pdf Download (99kB) | Preview |
|
|
Text
3.Surat Pernyataan.pdf Download (91kB) | Preview |
|
|
Text
4.Lembar Pengesahan.pdf Download (212kB) | Preview |
|
|
Text
5.Kata Pengantar.pdf Download (51kB) | Preview |
|
|
Text
6.Daftar isi.pdf Download (152kB) | Preview |
|
|
Text
7.Daftar Tabel.pdf Download (99kB) | Preview |
|
|
Text
8.Daftar Gambar.pdf Download (127kB) | Preview |
|
Text
9.Bab 1.pdf Restricted to Registered users only Download (158kB) |
||
Text
10.Bab 2.pdf Restricted to Registered users only Download (405kB) |
||
Text
11.Bab 3.pdf Restricted to Registered users only Download (120kB) |
||
Text
12.Bab 4.pdf Restricted to Registered users only Download (382kB) |
||
Text
13.Bab 5.pdf Restricted to Registered users only Download (440kB) |
||
Text
14.Bab 6.pdf Restricted to Registered users only Download (108kB) |
||
Text
15.Daftar Pustaka.pdf Restricted to Registered users only Download (140kB) |
||
Text
16.Lampiran.pdf Restricted to Registered users only Download (83kB) |
Abstract
ABSTRAKSI Dalam layanan customer care selama ini untuk mengukur kinerja customer care hanya menggunakan survei dimana tingkat partisipasi customer untuk mengisi survei rendah.Sehingga tidak dapat mengetahui sentimen customer dengan real di media sosial Twitter .Sentimen menjadi sangat penting karena merupakan salah satu indikator kesuksesan suatu layanan customer care. Celah ini lah yang kemudian dimanfaatkan penulis untuk mencoba mengaplikasikan Analisis sentimen pada Twitter terhadap customer care.Pada penelitian ini penulis menggunakan algoritma lexicon based(Library TextBlob) dengan library stemming Sastrawi untuk sentiment analisis layanan customer care di Twitter. Berdasarkan hasil ujicoba yang telah dilakukan penggunaan library sastrawi menghasilkan akurasi 40,3 % ,sedangkan Sentimen analisis tanpa proses stemming library sastrawi dan stopword menghasilkan akurasi yang lebih baik dengan tingkat akurasi 46.7 %. Kata Kunci: Lexicon Based,Library Sastrawi ,Sentimen analsis ABSTRACT In customer care service so far to measure the performance of customer care only use survey where the level of customer participation to fill the survey low.Sehingga can not know the customer's sentiment with real in social media Twitter.Sentiments become very important because it is one indicator of the success of a customer care service . This gap is then used by the author to try to apply Twitter sentiment analysis of customer care. In this study the authors use lexicon algorithm based with library stemming Sastrawi for sentiment analysis of customer care services on Twitter. Baed on results of experiments that have been made use of library sastrawi produce accuracy 40 , 3%, while Sentiment analysis without stemming process library sastrawi and stopwords produce better accuracy with an accuracy of 46.7%. Keyword : Lexicon Based,Library Sastrawi ,Sentimen analsis
Item Type: | Thesis (S1) |
---|---|
Call Number CD: | FIK/INFO 18 035 |
NIM/NIDN Creators: | 41514310025 |
Uncontrolled Keywords: | Kata Kunci: Lexicon Based,Library Sastrawi ,Sentimen analsis |
Subjects: | 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | siti maisyaroh |
Date Deposited: | 11 Aug 2022 06:50 |
Last Modified: | 11 Aug 2022 06:50 |
URI: | http://repository.mercubuana.ac.id/id/eprint/67374 |
Actions (login required)
View Item |