SEPTIAN, YOSUA (2024) ANALISIS PREDIKSI PENJUALAN MENU FAVORIT MENGGUNAKAN ALGORITMA APRIORI DI MILI COFFEE & ROASTER. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (405kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (109kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (114kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (142kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (221kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (341kB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (114kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (206kB) |
||
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (402kB) |
Abstract
This research aims to optimize sales and customer experience at Mili Coffee and Roastery, a renowned coffee shop, utilizing data mining techniques. We employ association algorithms and the Apriori algorithm to identify frequently ordered favorite menus based on historical sales data. Through careful analysis of sales data, we identify strong purchasing patterns and associations between various products offered by the cafe. Consequently, we can provide recommendations for favorite menus that align with customer preferences. The findings of this research provide valuable insights for Mili Coffee and Roastery in data-driven decision-making. Marketing and promotional strategies can be enhanced by focusing on these favorite menus, ultimately boosting sales and customer satisfaction. This research addresses a gap in the literature by applying association algorithms and Apriori in the coffee industry and incorporating predictions of favorite menu sales. Therefore, this project serves as a practical guide for cafe owners and similar sectors aiming to maximize their sales potential through intelligent data analysis. Keywords: Machine Learning, Apriori, Association, Coffee Shop, Coffee Penelitian ini bertujuan untuk mengoptimalkan penjualan dan pengalaman pelanggan di Mili Coffee and Roastery, sebuah kedai kopi yang terkenal, dengan memanfaatkan teknik data mining. Kami menggunakan algoritma Apriori untuk mengidentifikasi menu-menu favorit yang sering dipesan oleh pelanggan berdasarkan data penjualan historis. Melalui analisis data penjualan yang cermat, kami mengidentifikasi pola pembelian yang kuat dan asosiasi antara berbagai produk yang ditawarkan oleh kafe. Dengan demikian, kami dapat memberikan rekomendasi menu favorit yang sesuai dengan preferensi pelanggan. Hasil penelitian ini memberikan wawasan yang berharga bagi Mili Coffee and Roastery dalam pengambilan keputusan berdasarkan data. Strategi pemasaran dan promosi dapat ditingkatkan dengan fokus pada menu-menu favorit, yang diharapkan akan meningkatkan penjualan dan kepuasan pelanggan. Penelitian ini mengisi kesenjangan dalam literatur dengan menerapkan Apriori pada industri kafe dan dengan melibatkan prediksi penjualan menu favorit. Dengan demikian, proyek ini dapat menjadi panduan praktis bagi pemilik bisnis kafe dan sektor sejenis yang ingin memaksimalkan potensi penjualan mereka melalui analisis data yang cerdas. Kata Kunci: Machine Learning, Aproriari, Asoiasi, Coffee Shop, Coffee
Actions (login required)
View Item |