RAHMITA, HUTAMI (2024) TRANSFORMASI DATA PENJUALAN UNTUK PERANCANGAN DATA WAREHOUSE MENGGUNAKAN METODE KIMBALL. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
1. Hal Cover.pdf Download (1MB) | Preview |
|
|
Text (ABSTRAK)
2. Abstrak.pdf Download (130kB) | Preview |
|
Text (BAB I)
3. BAB I.pdf Restricted to Registered users only Download (293kB) |
||
Text (BAB II)
4. BAB II.pdf Restricted to Registered users only Download (447kB) |
||
Text (BAB III)
5. BAB III.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB IV)
6. BAB IV.pdf Restricted to Registered users only Download (2MB) |
||
Text (BAB V)
7. BAB V.pdf Restricted to Registered users only Download (111kB) |
||
Text (DAFTAR PUSTAKA)
8. Daftar Pustaka.pdf Restricted to Registered users only Download (136kB) |
||
Text (LAMPIRAN)
9. Lampiran.pdf Restricted to Registered users only Download (245kB) |
Abstract
The objective of this research is to transform three distinct datasets (product, customer, transaction) into data warehouses utilising Kimball's nine-step method. The application of information systems in the sales industry employs modern information technology to manage big data in an efficient manner, which is of vital importance for strategic decisions. However, sales data frequently exhibits inappropriate formats and structures, thereby complicating analysis. This research improves the presentation of data on transaction datasets by separating metadata such as product_id, quantity, and item_price. This facilitates data integration and improves efficiency. Secondary data obtained from Kaggle's site, covering 44,447 product data lines, 100,001 customer data lines and 852,585 sales transaction data lines with a total of 1,193,024 data lines from 2016 to 2022, was subjected to data transformation using Pentaho Data Integration. The nine-step method proposed by Kimball was employed in this process. The ETL process successfully combines three datasets into a single data warehouse, comprising one fact transaction table and five dimensional tables: one for products, one for customers, one for payments, one for promotions, and one for shipments. This enables more detailed and structured sales analysis. The data transformation process successfully addresses data format and structure issues in transaction datasets by separating product metadata and modifying non-compliant values in relevant columns. Keywords: Data Transformation, Data Warehouse, ETL, Kimball's Nine Step Method, Data Integration, Sales Data Penelitian ini bertujuan untuk mentransformasi tiga dataset terpisah (produk, pelanggan, transaksi) ke dalam data warehouse menggunakan metode sembilan langkah Kimball. Penerapan sistem informasi dalam industri penjualan memanfaatkan teknologi informasi modern untuk mengelola data besar secara efisien, yang sangat penting untuk keputusan strategis. Namun, data penjualan seringkali memiliki format dan struktur yang tidak sesuai, mempersulit analisis. Penelitian ini memperbaiki penyajian data pada dataset transaksi dengan memisahkan metadata seperti product_id, quantity, dan item_price untuk mempermudah integrasi data dan meningkatkan efisiensi. Data sekunder diperoleh dari situs Kaggle, meliputi 44,447 baris data produk, 100,001 baris data pelanggan, dan 852,585 baris data transaksi penjualan, dengan total 1,193,024 baris data dari 2016 hingga 2022. Metode sembilan langkah Kimball diterapkan dalam transformasi data menggunakan Pentaho Data Integration. Proses ETL ini berhasil menggabungkan tiga dataset menjadi satu data warehouse yang terdiri dari satu tabel fact transaction dan lima tabel dimensi dim product, dim customer, dim payment, dim promo, dim shipment, memungkinkan analisis penjualan yang lebih mendalam dan terstruktur. Proses transformasi data berhasil menangani masalah format dan struktur data pada dataset transaksi, dengan memisahkan product metadata serta membersihkan dan mengubah nilai-nilai yang tidak sesuai dalam kolom-kolom yang relevan. Keyword : Transformasi data, Data Warehouse, ETL, Metode Nine Step Kimball, Integrasi Data, Data Penjualan
Actions (login required)
View Item |