PERBANDINGAN AKURASI DALAM ANALISIS SENTIMEN BERBASIS ROBERTA DAN NAIVE BAYES PADA TOPIK VAKSIN DI MASA PANDEMI

OCTORICO, MUHAMMAD KEVIN (2024) PERBANDINGAN AKURASI DALAM ANALISIS SENTIMEN BERBASIS ROBERTA DAN NAIVE BAYES PADA TOPIK VAKSIN DI MASA PANDEMI. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (HAL COVER)
01 COVER.pdf

Download (247kB)
[img] Text (ABSTRAK)
02 ABSTRAK.pdf

Download (36kB)
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (43kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (143kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (56kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (639kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (32kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (94kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (666kB)

Abstract

The Covid-19 pandemic has not only led to significant changes in everyday life but has also sparked a variety of viewpoints on vaccination. Understanding public perception of vaccination is crucial, with social media, particularly Twitter, serving as a primary platform for expressing these opinions. This research aims to evaluate the effectiveness of various sentiment analysis models, including combinations of RoBERTa-RoBERTa, RoBERTa-Naive Bayes, and AFINN with RoBERTa and Naive Bayes, in interpreting public sentiment on Covid-19 vaccination. RoBERTa, a transformer-based model, is renowned for its revolutionary impact in the field of natural language processing (NLP), while Naive Bayes remains relevant in text analysis with its more traditional approach. The data analyzed comprises English-language tweets related to Covid-19 vaccination. This study adopts a quantitative approach, focusing on comprehensive analysis including Precision, Recall, F1-Score, and Accuracy to classify positive, negative, and neutral sentiments. The findings show varying performance among these models, with the AFINN-RoBERTa 10k model exhibiting the highest performance. These findings are expected to provide new insights into the applicability of various NLP models in a highly relevant and dynamic context, and contribute to further development in the field of sentiment analysis related to public health issues. Keywords: Sentiment Analysis, RoBERTa, Naive Bayes, Covid-19 Vaccine, NLP, Social Media, Twitter. Pandemi Covid Covid-19 tidak hanya menyebabkan perubahan besar dalam kehidupan seharisehari-hari tetapi juga memicu beragam pandangan mengenai vaksinasi. Dengan pentingnya memahami persepsi publik terhadap vaksinasi, media sosial, khususnya Twitter, menjadi sarana utama dalam menyuarakan berbagai opini. Penelitian ini bertujuan untuk mengevaluasi efektivitas beberapa model analisis sentimen, termasuk kombinasi RoBERTa RoBERTa-RoBERTa, RoBERTa RoBERTa-Naive Bayes, dan AFINN dengan RoBERTa dan Naive Bayes, dalam menginterpretasikan sentimen publik mengenai vaksin Covid Covid-19. RoBERTa, sebagai model berbasis transformer, dikenal revolusioner dalam bidang pemrosesan bahasa alami (NLP), sementara Naive Bayes, dengan pendekatan tradisionalnya, tetap relevan dalam analisis teks. Data yang dianalisis adalah kumpulan tweet dalam Bahasa Inggris yang berkaitan dengan vaksinasi Covid Covid-19. Penelitian ini menggunakan pendekatan kuantitatif, dengan fokus pada analisis komprehensif yang mencakup Precision, Recall, F1 F1-Score, dan Accuracy untuk mengklasifikasikan sentimen positif, negatif, dan netral. Hasil penelitian menunjukkan variasi performa di antara modelmodel-model tersebut, dengan model AFINN AFINN-RoBERTa 10k menunjukkan performa terbaik. Temuan ini diharapkan memberikan pemahaman baru tentang aplikabilitas berbagai model NLP dalam konteks yang sangat relevan dan dinamis, serta berkontribusi pada pengembangan lebih lanjut di bidang analisis sentimen terkait isu kesehatan publik. Kata Kunci: Analisis Sentimen, RoBERTa, Naive Bayes , Vaksin Covid Covid-19, NLP, Media Sosial, Twitter.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 008
NIM/NIDN Creators: 41518010184
Uncontrolled Keywords: Analisis Sentimen, RoBERTa, Naive Bayes , Vaksin Covid Covid-19, NLP, Media Sosial, Twitter
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.7 Multimedia Systems/Sistem-sistem Multimedia > 006.75 Social Multimedia/Multimedia Social > 006.754 Online Social Network/Situs Jejaring Sosial, Sosial Media
600 Technology/Teknologi > 610 Medical, Medicine, and Health Sciences/Ilmu Kedokteran, Ilmu Pengobatan dan Ilmu Kesehatan > 614 Public Preventive Medicine/Ilmu Kesehatan Masyarakat > 614.5 Incident of and Public Measures to Prevent Specific Diseases and Kinds of Diseases/Timbulnya Penyakit, Penyebaran Penyakit dan Pengawasan Penyakit
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 22 Jan 2024 08:00
Last Modified: 22 Jan 2024 08:00
URI: http://repository.mercubuana.ac.id/id/eprint/85491

Actions (login required)

View Item View Item