INDRASTATA, ILHAM (2023) Analisa dan Implementasi Algoritma Random Forest dan K-Nearest Neighbors Dalam Menentukan Strategi Promosi Pada Perbankan. S1 thesis, Universitas Mercu Buana - Menteng.
Text (Cover)
41519110153-Ilham Indrastata-01 Cover - Ilham Indrastata.pdf Download (433kB) |
|
Text (Abstrak)
41519110153-Ilham Indrastata-02 Abstrak - Ilham Indrastata.pdf Download (50kB) |
|
Text (Bab 1)
41519110153-Ilham Indrastata-03 Bab 1 - Ilham Indrastata.pdf Restricted to Registered users only Download (58kB) |
|
Text (Bab 2)
41519110153-Ilham Indrastata-04 Bab 2 - Ilham Indrastata.pdf Restricted to Registered users only Download (98kB) |
|
Text (Bab 3)
41519110153-Ilham Indrastata-05 Bab 3 - Ilham Indrastata.pdf Restricted to Registered users only Download (113kB) |
|
Text (Bab 4)
41519110153-Ilham Indrastata-06 Bab 4 - Ilham Indrastata.pdf Restricted to Registered users only Download (603kB) |
|
Text (Bab 5)
41519110153-Ilham Indrastata-07 Bab 5 - Ilham Indrastata.pdf Restricted to Registered users only Download (55kB) |
|
Text (Daftar Pustaka)
41519110153-Ilham Indrastata-08 Daftar Pustaka - Ilham Indrastata.pdf Restricted to Registered users only Download (113kB) |
|
Text (Lampiran)
41519110153-Ilham Indrastata-09 Lampiran - Ilham Indrastata.pdf Restricted to Registered users only Download (580kB) |
|
Text (Formulir Pernyataan Keabsahan dan Persetujuan Publikasi Tugas Akhir)
41519110153-Ilham Indrastata-10 Hasil Scan Formulir Pernyataan Keabsahan dan Persetujuan Publikasi Tugas Akhir - Ilham Indrastata.pdf Restricted to Repository staff only Download (110kB) |
Abstract
Penelitian ini bertujuan untuk menganalisis efektivitas promosi dalam industri perbankan dengan menerapkan algoritma Random Forest dan K-Nearest Neighbors (K-NN). Dalam analisis ini, data sejarah promosi dan respon pelanggan digunakan untuk membangun model yang dapat mengidentifikasi faktor-faktor kunci yang memengaruhi keberhasilan promosi. Selain itu, algoritma K-NN digunakan untuk mengelompokkan nasabah dengan pola perilaku serupa berdasarkan atribut tertentu. Hasil dari penelitian ini diharapkan dapat memberikan panduan yang lebih jelas bagi industri perbankan dalam merancang strategi promosi yang efektif, mengurangi biaya, dan mencapai tujuan bisnis yang lebih baik. Namun, penting untuk diingat bahwa faktor eksternal seperti kondisi ekonomi dan kebijakan perusahaan juga harus diperhitungkan dalam perumusan strategi promosi yang holistik. This research aims to analyze the effectiveness of promotional strategies in the banking industry by applying the Random Forest and K-Nearest Neighbors (K-NN) algorithms. In this analysis, historical data on promotions and customer responses were utilized to build a model that can identify key factors influencing the success of promotions. Additionally, the K-NN algorithm was employed to cluster customers with similar behavioral patterns based on specific attributes. The outcomes of this research are expected to provide clearer guidelines for the banking industry in crafting effective promotional strategies, reducing costs, and achieving better business objectives. However, it is essential to acknowledge that external factors such as economic conditions and corporate policies must also be considered in the formulation of a comprehensive promotional strategy.
Item Type: | Thesis (S1) |
---|---|
NIM/NIDN Creators: | 41519110153 |
Uncontrolled Keywords: | Random Forest, K-NN, Bank marketing Random Forest, K-NN, Bank marketing |
Subjects: | 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | PANCA LEGA SILABAN |
Date Deposited: | 27 Nov 2023 03:20 |
Last Modified: | 27 Nov 2023 03:20 |
URI: | http://repository.mercubuana.ac.id/id/eprint/84344 |
Actions (login required)
View Item |