APRIYANI, SEFTYA (2023) ANALISIS PERAMALAN PRODUKSI KELAPA SAWIT PADA PERKEBUNAN RAKYAT DI PROVINSI KALIMANTAN BARAT. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
01 COVER.pdf Download (374kB) | Preview |
|
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (213kB) | Preview |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (275kB) |
||
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (429kB) |
||
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (274kB) |
||
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (417kB) |
||
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (187kB) |
||
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (210kB) |
Abstract
Oil palm is one of the largest agricultural products in Indonesia and has high economic value and can improve the welfare of oil palm farmers. The amount of oil palm fruit production is not always stable or increasing, instead it fluctuates and falls which is influenced by many factors. This study aims to estimate the production level of oil palm fruit for the next five years based on data for 2012 - 2021 in West Kalimantan Province and to compare forecasting the amount of palm oil production using 3 (three) Time Series forecasting methods, namely the Linear Trend method, Single Exponential Smoothing and Moving Averages. The image processed in this study is the production of oil palm fruit in the last 10 years which is sourced from data from the Central Bureau of Statistics based on the West Kalimantan Provincial Plantation and Livestock Service. Forecasting accuracy is then measured using MAD (Mean Absolute Deviation), MSE (Mean Squared Error) and MAPE (Mean Absolute Percent Error). The projection of the average amount of palm oil production in the next 5 years (the next period) using 3 forecasting methods is: 16,435,545 (Linear Trend); 10,994,812 (Single Exponential Smoothing) and 12,487,150 (Moving Average). Accuracy measurements using MAD, MSE and MAPE show that the most accurate method for forecasting the amount of palm oil production is forecasting using the Linear Trend polynomial method (MAD 108,855.10; MSE 19,896,565,928.90; and MAPE 1.29) because it has a high error rate. smaller than the results of forecasting using the Moving Average and Single Exponential Smoothing methods. Keywords: Time Series, production forecasting, Linear Trend, Single Exponential Smoothing and Moving Average. Kelapa sawit merupakan salah satu hasil pertanian terbesar yang ada di Indonesia dan memiliki nilai ekonomi yang tinggi dan dapat meningkatkan kesejahteraan para petani sawit. Jumlah produksi buah kelapa sawit tidak selalu stabil atau meningkat, melainkan mengalami naik turun yang dipengaruhi oleh banyak faktor. Penelitian ini bertujuan untuk memperkirakan tingkat produksi buah kelapa sawit untuk lima tahun kedepan berdasarkan data tahun 2012 - 2021 pada Provinsi Kalimantan Barat dan untuk membandingkan peramalan jumlah produksi kelapa sawit menggunakan 3 (tiga) metode peramalan Time Series yaitu metode Trend Linier, Single Exponential Smoothing dan Moving Average. Citra yang diolah dalam penelitian ini adalah produksi buah kelapa sawit dalam 10 tahun terkhir yang bersumber dari data Badan Pusat Statistik berdasarkan Dinas Perkebunan dan Peternakan Provinsi Kalimantan Barat. Akurasi peramalan selanjutnya diukur menggunakan MAD (Mean Absolute Deviation), MSE (Mean Squared Error) dan MAPE (Mean Absolute Percen tage Error). Proyeksi rata-rata jumlah produksi kelapa sawit pada 5 tahun kedepan (periode berikutnya) menggunakan 3 metode peramalan adalah: 16.435.545 (Trend Linier); 10.994.812 (Single Exponential Smooting) dan 12.487.150 (Moving Average). Pengukuran akurasi menggunakan MAD, MSE dan MAPE menunjukkan bahwa metode peramalan jumlah produksi kelapa sawit yang paling akurat adalah peramalan menggunakan metode polynomial Trend Linier (MAD 108.855,10; MSE 19.896.565.928,90; dan MAPE 1,29) karena memiliki tingkat kesalahan yang lebih kecil dibandingkan hasil peramalan menggunakan metode Moving Average dan Single Exponential Smoothing. Kata kunci: Time Series, peramalan produksi, Trend Linier, Single Exponential Smoothing dan Moving Average.
Item Type: | Thesis (S1) |
---|---|
Call Number CD: | FE/MJ. 23 230 |
Call Number: | SE/31/23/315 |
NIM/NIDN Creators: | 43117010395 |
Uncontrolled Keywords: | Time Series, peramalan produksi, Trend Linier, Single Exponential Smoothing dan Moving Average. |
Subjects: | 600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan 600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan > 650.1-650.9 Standard Subdivisions of Management, Public Relations, Business and Auxiliary Service/Subdivisi Standar Dari Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan |
Divisions: | Fakultas Ekonomi dan Bisnis > Manajemen |
Depositing User: | Sekar Mutiara |
Date Deposited: | 06 Oct 2023 07:11 |
Last Modified: | 06 Oct 2023 07:11 |
URI: | http://repository.mercubuana.ac.id/id/eprint/81247 |
Actions (login required)
View Item |