ANALISIS SENTIMEN PADA SOSIAL MEDIA TWITTER UNTUK MENGETAHUI PERSEPSI MASYARAKAT MENGENAI FESTIVAL MUSIK WE THE FEST

FACHRUROZI, RIZQY (2022) ANALISIS SENTIMEN PADA SOSIAL MEDIA TWITTER UNTUK MENGETAHUI PERSEPSI MASYARAKAT MENGENAI FESTIVAL MUSIK WE THE FEST. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (603kB) | Preview
[img]
Preview
Text (ASBTRAK)
02 Abstrak.pdf

Download (74kB) | Preview
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (113kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (19kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (212kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (43kB)
[img] Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf
Restricted to Registered users only

Download (81kB)
[img] Text (LAMPIRAN)
08 Lampiran.pdf
Restricted to Registered users only

Download (264kB)

Abstract

Social media Twitter can be a source of information to find out what the public thinks about certain subjects, for example the We The Fest music festival. This article presents the results of research on the sentiment analysis of the Twitter user community towards the We The Fest music festival. For the purposes of this prediction, the Decision Tree, Logistic Regression (SVM), and Support Vector Machine (SVM) techniques are used. The research dataset is obtained from Twitter tweets that are pulled by crawling the Twitter API using the keyword "We The Fest". For the implementation of the classification technique, the Rapid miner 9.7 tools are used. 002 both at the pre-processing and classification stages. The validation and evaluation used are split validation operators with a split ratio of 0.7 in the Logistic Regression (SVM) algorithm to produce regression and cross validation values for the number of folds with k = 10 for the Decision Tree algorithm and Support Vector Machine (SVM). From the experimental results it is known that the Support Vector Machine (SVM) technique provides the best results with accuracy, precision, and recall values of 85.40%, 85.57%, and 99.66%, respectively. Keyword: We The Fest, Twitter, Sentiment analysis, Rapidminer. Media sosial Twitter bisa menjadi salah satu sumber informasi untuk mengetahui pendapat masyarakat mengenai subjek tertentu seperti festival musik “We The Fest”. Artikel ini menyajikan hasil penelitian prediksi sentimen analisis masyarakat pengguna Twitter terhadap festival musik “We The Fest”. Untuk keperluan prediksi tersebut, digunakan teknik Decision Tree, Logistic Regression (SVM), dan Support Vector Machine (SVM). Dataset penelitian ini diperoleh dari cuitan Twitter yang ditarik melalui cara crawling API Twitter dengan menggunakan kata kunci “We The Fest”. Untuk implementasi teknik klasifikasi digunakan tools Rapidminer 9.7.002 baik pada tahap pre-processing dan klasifikasi. Validasi dan evaluasi yang digunakan adalah operator validation split dengan split ratio 0,7 Pada algoritma Logistic Regression (SVM) untuk menghasilkan nilai regresi dan cross validation pada number of folds dengan k=10 untuk algoritma Decision Tree dan Support Vector Machine (SVM). Dari hasil eksperimen diketahui bahwa teknik Support Vector Machine (SVM) memberikan hasil terbaik dengan nilai akurasi, presisi, dan recall masing-masing sebesar 85,40%, 85,57%, dan 99,66%. Kata kunci : We The Fest, Twitter, Sentimen analisis, Rapidminer.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 22 176
Call Number: SIK/15/22/130
NIM/NIDN Creators: 41516010053
Uncontrolled Keywords: We The Fest, Twitter, Sentimen analisis, Rapidminer
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.7 Multimedia Systems/Sistem-sistem Multimedia > 006.75 Social Multimedia/Multimedia Social > 006.754 Online Social Network/Situs Jejaring Sosial, Sosial Media
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 154 Subconscious and Altered States and Process/Psikologi Bawah Sadar > 154.6 Sleep Phenomena/Fenomena Tidur > 154.63 Dreams/Mimpi > 154.634 Analysis/Analisis
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 08 Nov 2022 05:13
Last Modified: 08 Nov 2022 05:13
URI: http://repository.mercubuana.ac.id/id/eprint/71418

Actions (login required)

View Item View Item