TAZKIAH MUHAROMAH, NYIMAS (2020) ANALISA STRUKTUR PRESTRESSED POST-TENSION PRECAST CONCRETE I GIRDER PADA JEMBATAN JALUR KERETA API. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01. COVER.pdf Download (297kB) | Preview |
|
Text (BAB I)
02. BAB 1.pdf Restricted to Registered users only Download (685kB) |
||
Text (BAB II)
03. BAB 2.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB III)
04. BAB 3.pdf Restricted to Registered users only Download (651kB) |
||
Text (BAB IV)
05. BAB 4.pdf Restricted to Registered users only Download (2MB) |
||
Text (BAB V)
06. BAB 5.pdf Restricted to Registered users only Download (413kB) |
||
Text (DAFTAR PUSTAKA)
07. DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (235kB) |
||
Text (LAMPIRAN)
08. LAMPIRAN.pdf Restricted to Registered users only Download (1MB) |
Abstract
The application of prestressed concrete in building structures continues to develop rapidly along with dvances in construction technology that can support equitable infrastructure in Indonesia. Meanwhile, the capability and reliability of a bridge is strongly influenced by the type and strength of the girder beam. In this research prestresseed post-tension precast I girder profile is used. Which in this final project, its profile structure will be analyzed. The design calculation consider to Perencanaan Perencanaan Struktur Beton untuk Jembatan (SNI T-12 2004) , Steel, concrete and composite bridges – Specification for loads (BS 5400-2: 1978), Bridge Management System (BMS), and ACI, calculation of loss of prestress with TY. Lin method . Prestress cable on the PC I girder design used 4 tendons, with the total of 62 types of uncoated 7 wire strands of wire super grade ASTM A416 270. The result proves that in the middle span of the Railroad Bridge has an initial prestressive force of 12108.60 kN and experiences a prestressed loss of 28,09%. Thus, the remaining effective stress is 8707,01kN. The profile and Section of I Girder proved that the structure able to withstand the loads that work on the bridge. So we get a safe bridge structure. Based on the calculation results, longitudinal reinforcement is used at the top of 10 D 10, on the body 12 D 10, the bottom 12 D 10, and 12 D 10 slab appearance. Keywords : Bridge, Precast Concrete, Prestressed Concrete, I Girder Aplikasi beton prategang pada struktur bangunan berkembang pesat seiring dengan kemajuan teknologi konstruksi yang dapat mendukung pemerataan infrastruktur di Indonesia. Sementara itu, kapabilitas dan kehandalan sebuah jembatan sangat dipengaruhi oleh jenis dan kekuatan balok girder. Pada penelitian ini Jembatan Jalur Kereta Api menggunakan profil I girder beton pracetak dengan teknologi prategang metode post-tension. Pada Tugas Akhir ini akan dilakukan analisa struktur profil I girder tersebut. Perencanaan PC I Girder akan mengacu kepada Perencanaan Struktur Beton untuk Jembatan (SNI T-12 2004) , Steel, concrete and composite bridges – Specification for loads (BS 5400-2: 1978), Bridge Management System (BMS), dan ACI, perhitungan kehilangan prategang dengan menggunakan metode TY. Lin . Kabel prestress pada desain PCI Girder digunakan 4 tendon dengan total 62 kawat jenis uncoated 7 wire super strands ASTM A-416 grade 270. Hasil perhitungan membuktikan bahwa pada bentang tengah Jembatan Jalur Kereta Api memiliki Gaya prategang awal sebesar 12108,60 kN dan mengalami kehilangan prategang sebesar 28,09 %. Sehingga, tersisa tegangan efektif sebesar 8707,01 kN. Bentuk dan Penampang I Girder terbukti mampu menahan beban-beban yang bekerja pada jembatan. Sehingga didapat suatu struktur jembatan yang aman. Berdasarkan hasil perhitungan, digunakan tulangan longitudinal pada bagian atas 10 D 10, pada bagian badan 12 D 10, bagian bawah 12 D 10, dan tampang slab 12 D 10. Kata kunci : Jembatan, Beton Pracetak, Beton prategang, I Girder
Actions (login required)
View Item |