PREDIKSI EFISIENSI DAN KEBUTUHAN TERNAK, FASILITAS UMUM, DAN BANTUAN SOSIAL DI DUA DESA WILAYAH KECAMATAN GABUSWETAN, KABUPATEN INDRAMAYU MENGGUNAKAN METODE RANDOM FOREST REGRESSOR

ANDIKA, MUHAMMAD RAFI (2025) PREDIKSI EFISIENSI DAN KEBUTUHAN TERNAK, FASILITAS UMUM, DAN BANTUAN SOSIAL DI DUA DESA WILAYAH KECAMATAN GABUSWETAN, KABUPATEN INDRAMAYU MENGGUNAKAN METODE RANDOM FOREST REGRESSOR. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (298kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (223kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (159kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (237kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (376kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (139kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (133kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (795kB)

Abstract

This study analyzes rural equipment needs using a hybrid approach of rational calculation and Random Forest algorithms. Indicators like household count, land area, and infrastructure length are used to predict equipment requirements. The machine learning model achieves high accuracy with perfect recall in identifying villages in need. Its predictions align with rational estimates, revealing major shortages in agricultural and public equipment, and a surplus in social assistance. This approach offers a data-driven basis for more targeted resource allocation. Keywords: equipment needs, village, Random Forest, rational estimation, aid distribution. Penelitian ini mengkaji kebutuhan alat bantu desa dengan pendekatan kombinasi antara perhitungan rasional dan algoritma Random Forest. Indikator seperti jumlah KK, luas lahan, dan panjang infrastruktur digunakan untuk memprediksi kebutuhan alat. Model machine learning menunjukkan akurasi tinggi dengan recall sempurna dalam mendeteksi desa yang membutuhkan alat. Hasil prediksi konsisten dengan estimasi rasional, yang menunjukkan kekurangan signifikan pada alat pertanian dan fasilitas umum, serta surplus pada bantuan sosial. Pendekatan ini dapat menjadi dasar distribusi alat yang lebih tepat sasaran. Kata Kunci: kebutuhan alat, desa, Random Forest, perhitungan rasional, distribusi bantuan

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 188
NIM/NIDN Creators: 41521010141
Uncontrolled Keywords: kebutuhan alat, desa, Random Forest, perhitungan rasional, distribusi bantuan
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
200 Religion/Agama > 290 Other Religions/Agama Selain Kristen > 297 Agama Islam/Islam > 297.6 Sociology of Islam/Sosiologi Islam > 297.62 Islamic Organization/Organisasi Islam > 297.622 Social organization/Organisasi Sosial
300 Social Science/Ilmu-ilmu Sosial > 330 Economics/Ilmu Ekonomi > 338 Production, Industrial Economics/Produksi, Ekonomi Industri > 338.1 Agriculture, Agricultural Economics, Agricultural Industries/Industri Pertanian, Ekonomi Pertanian
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 630 Agriculture and Related Technologies/Pertanian dan Teknologi Terkait > 631 Specific Techniques; Apparatus, Equipment, Materials/Teknik Spesifik; Peralatan, Peralatan, Bahan > 631.3 Tool, Machinery, Apparatus, Equipment of Agriculture/Alat-alat, Mesin dan Perlengkapan Pertanian
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 07 Oct 2025 08:07
Last Modified: 07 Oct 2025 08:07
URI: http://repository.mercubuana.ac.id/id/eprint/98874

Actions (login required)

View Item View Item