IRAWAN, ROY (2025) PENGENDALIAN PERSEDIAAN CAT CLEAR COAT DENGAN METODE MATERIAL REQUIREMENTS PLANNING (MRP) UNTUK OPTIMALISASI PERENCANAAN PRODUKSI. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (512kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (78kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (475kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (42kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (593kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (31kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (166kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (356kB) |
Abstract
In retail-based manufacturing industries such as PT Bintang Chemical Indonesia, the gap between demand and supply is a crucial aspect in maintaining production stability and customer satisfaction. This study aims to identify the most accurate demand forecasting method based on 2024 data, develop an optimal master production schedule (MPS), and evaluate the most efficient Material Requirements Planning (MRP) method for controlling raw material inventory. This study employs a quantitative approach using a case study method, relying on historical demand data for clear coat products, raw material requirement data, and productionrelated cost components. The analysis techniques used include the Moving Average, Exponential Smoothing, and Linear Regression methods for forecasting, as well as the Chase, Level, and Mixed Strategy methods for aggregate planning. In the MRP process, the Economic Order Quantity (EOQ), Period Order Quantity (POQ), and Wagner Within algorithms are used. The results of the study indicate that the Linear Regression method yields the lowest error rate, while the best production strategy is demonstrated by the Mixed Strategy, which is stable and flexible. The WagnerWithin Algorithm method results in the lowest total inventory control costs, making it recommended for use. This study makes an important contribution to production and inventory decision-making in the chemical industry and can serve as a reference for the development of integrated production planning systems in the future. Keywords: Forecasting, MPS, MRP, Linear Regression, Wagner-Within Algorithm. Dalam industri manufaktur berbasis retail seperti di PT Bintang Chemical Indonesia, terjadinya gap antara permintaan dan persediaan menjadi aspek krusial dalam menjaga stabilitas produksi dan kepuasan pelanggan. Penelitian ini bertujuan untuk mengidentifikasi metode peramalan permintaan yang paling akurat berdasarkan data tahun 2024, menyusun jadwal induk produksi (MPS) yang optimal, serta mengevaluasi metode Material Requirement Planning (MRP) yang paling efisien dalam mengendalikan persediaan bahan baku. Penelitian ini menggunakan pendekatan kuantitatif dengan metode studi kasus, mengandalkan data historis permintaan produk clear coat, data kebutuhan bahan baku, serta komponen biaya terkait produksi. Teknik analisis yang digunakan meliputi metode Moving Average, Exponential Smoothing, dan Regresi Linear untuk peramalan, serta metode Chase, Level, dan Mixed Strategy untuk perencanaan agregat. Dalam proses MRP, digunakan metode Economic Order Quantity (EOQ), Period Order Quantity (POQ), dan algoritma Wagner Within. Hasil penelitian menunjukkan bahwa metode Regresi Linear memberikan tingkat kesalahan paling rendah, sementara strategi produksi terbaik ditunjukkan oleh Mixed Strategy yang stabil dan fleksibel. Metode Wagner-Within Algorithm menghasilkan total biaya pengendalian persediaan paling rendah, sehingga direkomendasikan untuk digunakan. Penelitian ini memberikan kontribusi penting dalam pengambilan keputusan produksi dan persediaan di industri kimia, serta dapat dijadikan referensi dalam pengembangan sistem perencanaan produksi terpadu di masa mendatang. Kata Kunci: Peramalan, MPS, MRP, Regresi Linear, Wagner-Within Algorithm
Actions (login required)
![]() |
View Item |