IMPLEMENTASI K-MEANS CLUSTERING DAN POLYNOMIAL REGRESSION DALAM ANALISIS POLA PENJUALAN DAN PREDIKSI PADA TOKO MISEY CLOTHING

RISKIAH, SHABRINA (2025) IMPLEMENTASI K-MEANS CLUSTERING DAN POLYNOMIAL REGRESSION DALAM ANALISIS POLA PENJUALAN DAN PREDIKSI PADA TOKO MISEY CLOTHING. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (525kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (283kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (530kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (366kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (271kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (281kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (963kB)

Abstract

Clothing is one of the basic human needs that continues to experience developments in terms of models and market demand. MISEY Clothing store as one of the stores that sells various types of t-shirts, which has the potential to grow through the use of data analysis. This research aims to group products based on sales performance using K-Means Clustering and predict weekly sales for each cluster using a Polynomial Regression model. The initial stage starts from data preprocessing, product segmentation using K-Means with evaluation of the selection of the number of clusters using Elbow Method, Silhouette Score, and Davies-Bouldin Index. Subsequently, weekly predictions are made for products in each cluster using Polynomial Regression with Ridge regularization, enhanced with features resulting from feature engineering such as lag, holidays, and rolling mean. The prediction results will be tested using MAE, MSE, RMSE and R2. The prediction accuracy of the research results shows that this approach improves prediction accuracy significantly, with a decrease in MAE value of more than 90% and R² value approaching 1. This research is expected to help MISEY Clothing stores in improving operational efficiency and data-based decision making to support business growth. Keywords : Clustering, K-Means, Forecasting, Polynomial Regression, Sales Pakaian merupakan salah satu kebutuhan pokok manusia yang terus mengalami perkembangan dalam hal model maupun permintaan pasar. Toko MISEY Clothing sebagai salah satu toko yang menjual berbagai macam jenis kaos, yang memiliki potensi untuk berkembang melalui pemanfaatan analisis data. Penelitian ini bertujuan untuk mengelompokkan produk berdasarkan performa penjualan dengan menggunakan K-Means Clustering dan memprediksi penjualan mingguan pada setiap cluster menggunakan model Polynomial Regression. Tahap awal dimulai dari preprocessing data, segmentasi produk menggunakan K-Means dengan evaluasi pemilihan jumlah cluster menggunakan Elbow Method, Silhouette Score, dan Davies-Bouldin Index. Selanjutnya, dilakukan prediksi mingguan untuk produk di setiap cluster menggunakan Polynomial Regression dengan regularisasi Ridge yang dilengkapi fitur hasil dari feature engineering seperti lag, libur, dan rolling mean. Hasil prediksi akan uji dengan menggunakan MAE, MSE, RMSE dan R2 . Keakuratan prediksi terhadap hasil penelitian menunjukkan bahwa pendekatan ini meningkatkan akurasi prediksi secara signifikan, dengan penurunan nilai MAE lebih dari 90% dan nilai R² mendekati 1. Penelitian ini diharapkan dapat membantu toko MISEY Clothing dalam meningkatkan efisiensi operasional serta pengambilan keputusan berbasis data untuk mendukung pertumbuhan bisnis. Kata Kunci : Clustering, K-Means, Prediksi, Regresi Polinomial, Penjualan

Item Type: Thesis (S1)
Call Number CD: FIK/SI. 25 061
NIM/NIDN Creators: 41821010002
Uncontrolled Keywords: Clustering, K-Means, Prediksi, Regresi Polinomial, Penjualan
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 640 Home Economic and Family Living Management/Kesejahteraan Rumah Tangga dan Manajemen Kehidupan Keluarga > 646 Sewing Materials and Equipment, Clothing, Management of Personal and Family Life/Mesin Jahit dan Perlengkapan Menjahit, Pakaian, Management Pribadi dan Keluarga > 646.3 Clothing/Pakaian, Tata Busana, Mode Busana, Fashion
600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan > 658 General Management/Manajemen Umum > 658.8 Marketing, Management of Distribution/Marketing, Manajemen Distribusi
Divisions: Fakultas Ilmu Komputer > Sistem Informasi
Depositing User: khalimah
Date Deposited: 16 Aug 2025 01:35
Last Modified: 16 Aug 2025 01:35
URI: http://repository.mercubuana.ac.id/id/eprint/96836

Actions (login required)

View Item View Item