RAMADHAN, MUHAMMAD RIZKY (2025) PERBANDINGAN ALGORITMA CONTENT BASED FILTERING DAN COLLABORATIVE FILTERING UNTUK MEDETEKSI KONTEN PADA TIKTOK FAKULTAS ILMU KOMPUTER UNIVERSITAS MERCU BUANA. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (582kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (96kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (120kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (115kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (339kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (28kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (119kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (827kB) |
Abstract
The popularity of TikTok as a short-video platform has rapidly expanded, especially among Indonesia's younger generation, including students of the Faculty of Computer Science (Fasilkom). However, the explosion of user-generated content has created a challenge for TikTok's algorithms in recommending relevant and engaging content. This study analyzes the effectiveness of two recommendation algorithms, Content-Based Filtering (CBF) and Collaborative Filtering (CF), in recommending Fasilkom TikTok content to be more relevant, engaging, and increase visibility. By using this approach, the research aims to help Fasilkom enhance branding, broaden reach, and optimize content strategy on TikTok. The analysis evaluates each algorithm’s performance in terms of relevance, user engagement, and its impact on follower growth and campus image. The results of this research are expected to provide insights into optimizing content recommendation algorithms to improve the effectiveness of Fasilkom's digital marketing strategy. Keywords: TikTok, Content-Based Filtering, Collaborative Filtering, content recommendation, algorithms Popularitas TikTok sebagai platform video pendek telah berkembang pesat, terutama di kalangan generasi muda Indonesia, termasuk mahasiswa Fakultas Ilmu Komputer (Fasilkom). Namun, ledakan konten yang dihasilkan pengguna membuat tantangan bagi algoritma TikTok untuk merekomendasikan konten yang relevan dan menarik. Penelitian ini menganalisis efektivitas dua algoritma rekomendasi, yaitu Content-Based Filtering (CBF) dan Collaborative Filtering (CF), dalam merekomendasikan konten TikTok Fasilkom agar lebih relevan, menarik, dan meningkatkan visibilitas. Dengan menggunakan pendekatan ini, penelitian bertujuan untuk membantu Fasilkom meningkatkan branding, memperluas jangkauan, dan mengoptimalkan strategi konten di TikTok. Analisis dilakukan dengan mengevaluasi kinerja masing-masing algoritma dalam hal relevansi, keterlibatan pengguna, serta dampaknya terhadap jumlah pengikut dan citra kampus. Hasil penelitian diharapkan dapat memberikan wawasan mengenai optimalisasi algoritma rekomendasi konten untuk meningkatkan efektivitas strategi pemasaran digital Fasilkom. Kata kunci: TikTok, Algoritma Rekomendasi, Content-Based Filtering (CBF), Collaborative Filtering (CF), Strategi Konten Digital
Actions (login required)
![]() |
View Item |