NASUTION, WARDAH FAKHRIYYAH D (2024) PERBANDINGAN ALGORITMA GRAPH NEURAL NETWORK DAN ALGORITMA MAXIMUM LIKELIHOOD DALAM MENDETEKSI TINGKAT KEKERINGAN PADA TANAMAN KOPI BERDASARKAN EKSTRAKSI FITUR NORMALIZED DIFFERENCE DROUGHT INDEX: STUDI KASUS DI PERKEBUNAN KOPI MEKAR TANI). S1 thesis, Universitas Mercu Buana Jakarta.
Text (HAL COVER)
01 COVER.pdf Download (408kB) |
|
Text (ABSTRAK)
02 ABSTRAK.pdf Download (34kB) |
|
Text (BAB I)
03 BAB 1.pdf Restricted to Registered users only Download (112kB) |
|
Text (BAB II)
04 BAB 2.pdf Restricted to Registered users only Download (556kB) |
|
Text (BAB III)
05 BAB 3.pdf Restricted to Registered users only Download (178kB) |
|
Text (BAB IV)
06 BAB 4.pdf Restricted to Registered users only Download (404kB) |
|
Text (BAB V)
07 BAB 5.pdf Restricted to Registered users only Download (32kB) |
|
Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (138kB) |
|
Text (LAMPIRAN)
09 LAMPIRAN.pdf Restricted to Registered users only Download (394kB) |
Abstract
Coffee plantations in Betara Regency, Jambi Province, Indonesia are vulnerable to drought because it can have a significant impact on crop yield and quality. Drought can disrupt the growth of coffee plants and result in a significant reduction in production, so it is important to be aware of the potential risk of drought on coffee plantations. This research proposes an innovative approach that aims to develop a robust and precise method for identifying drought in coffee plantations. This method uses Normalized Difference Drought Index (NDDI) extraction as a drought index and compares the Maximum Likelihood Algorithm and the GNN Algorithm to determine the performance of the best algorithm model for detecting the level of drought in coffee plantations. The proposed method utilizes Google Earth Engine to obtain Sentinel-2A satellite imagery from the Mekar Tani Coffee Plantation in Betara District. The research results show that the Maximum Likelihood Algorithm is superior and more suitable for detecting the level of drought in coffee plantations compared to GNN by achieving an accuracy of 0.98, precision 0.98, recall 0.97, and F1-Score 0.99 based on confusion matrix calculations. Therefore, this research can help contribute to coffee farmers and researchers in identifying the level of drought and potential risk of drought in a region. Keywords: Coffee Plantations, Drought detection, Maximum Likelihood, Graph Neural Network, NDDI Perkebunan kopi di Kabupaten Betara, Provinsi Jambi, Indonesia rentan terhadap kekeringan karena dapat berdampak signifikan terhadap hasil dan kualitas tanaman. Kekeringan dapat mengganggu pertumbuhan tanaman kopi dan mengakibatkan penurunan produksi secara signifikan sehingga penting untuk mewaspadai potensi risiko kekeringan pada perkebunan kopi. Penelitian ini mengusulkan pendekatan inovatif yang bertujuan untuk membangun metode yang kuat dan tepat untuk mengidentifikasi kekeringan di perkebunan kopi. Metode ini menggunakan ekstraksi Normalized Difference Drought Index (NDDI) sebagai indeks kekeringan dan melakukan perbandingan Algoritma Maximum Likelihood dan Algoritma GNN untuk mengetahui performa model algoritma terbaik untuk mendeteksi tingkat kekeringan di perkebunan kopi. Metode yang diusulkan memanfaatkan Google Earth Engine untuk memperoleh citra satelit Sentinel-2A dari Perkebunan Kopi Mekar Tani di Kecamatan Betara. Hasil penelitian menunjukkan bahwa Algoritma Maximum Likelihood lebih unggul dan lebih cocok untuk mendeteksi tingkat kekeringan perkebunan kopi dibandingkan GNN dengan mencapai akurasi 0.98, presisi 0.98, recall 0.97, dan F1-Score 0.99 berdasarkan perhitungan matriks konfusi. Oleh karena itu, penelitian ini dapat membantu memberikan kontribusi bagi petani kopi dan peneliti untuk mengidentifikasi tingkat kekeringan dan potensi risiko kekeringan di suatu wilayah. Keywords: Perkebunan kopi, Deteksi kekeringan, Maximum Likelihood, Graph Neural Network, NDDI
Actions (login required)
View Item |