PERBANDINGAN OPTIMIZER ADAM, SGD, RMSPROP DALAM MENGKLASIFIKASI JENIS CITRA BERAS MENGGUNAKAN METODE EFFICIENTNET B0

SUPRAWOTO, TRISTAN RAJENDRA (2024) PERBANDINGAN OPTIMIZER ADAM, SGD, RMSPROP DALAM MENGKLASIFIKASI JENIS CITRA BERAS MENGGUNAKAN METODE EFFICIENTNET B0. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (533kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (27kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (34kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (261kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (167kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (344kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (28kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (136kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (750kB)

Abstract

Rice is a staple food in Indonesia, cultivated in various varieties and types. However, the diversity of rice types has led to several issues among the population, including difficulty in identifying rice varieties. This is due to the similarities between rice varieties in Indonesia, both in terms of shape and color, as well as differences in quality influenced by agricultural processes, harvesting, transportation, and processing. Currently, rice quality assessment still relies on human observation, which tends to be subjective and inconsistent. Therefore, a system is needed to assist the population, especially the millennial generation, in identifying various rice types more accurately and clearly. This research employs the Efficient Net B0 method to automatically detect rice types. Keywords: Beras, EfficientNet B0, EfficientNet Beras adalah makanan pokok di Indonesia yang ditanam dalam berbagai varietas dan jenis. Namun, keragaman jenis beras ini telah menyebabkan beberapa masalah di antara masyarakat, termasuk kesulitan dalam mengidentifikasi jenis beras. Hal ini disebabkan oleh kemiripan antara varietas beras yang ada di Indonesia, baik dalam bentuk maupun warna, serta perbedaan kualitas yang dapat dipengaruhi oleh proses pertanian, panen, pengangkutan, dan pengolahan. Saat ini, penilaian kualitas beras masih bergantung pada pengamatan manusia, yang cenderung subjektif dan tidak konsisten. Oleh karena itu, diperlukan sistem yang dapat membantu masyarakat, terutama generasi milenial, dalam mengidentifikasi berbagai jenis beras dengan lebih akurat dan jelas. Penelitian ini menggunakan metode Efficient Net B0 untuk mendeteksi jenis beras secara otomatis. Kata Kunci: Beras, EfficientNet B0, EfficientNet

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 177
Call Number: SIK/15/24/130
NIM/NIDN Creators: 41520010135
Uncontrolled Keywords: Beras, EfficientNet B0, EfficientNet
Subjects: 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan
600 Technology/Teknologi > 660 Chemical Engineering and Related Technologies/Teknologi Kimia dan Ilmu yang Berkaitan > 664 Food Technology/Teknologi Pembuatan Makanan Komersial > 664.7 Grains Product/Teknologi Pembuatan Makanan dari Padi dan Biji-bijian
700 Arts/Seni, Seni Rupa, Kesenian > 750 Painting and Paintings/Seni Lukis dan Lukisan > 758 Other Subjects/Subjel Lainnya > 758.6 Industrial and Technical Subjects/Subjek Industri dan Teknik
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 22 Aug 2024 05:01
Last Modified: 22 Aug 2024 05:01
URI: http://repository.mercubuana.ac.id/id/eprint/90571

Actions (login required)

View Item View Item