Syukron, Muhammad (2024) ANALISIS CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS UNTUK OPTIMALISASI PENGADAAN BARANG DI PT. BRATASENA JAYA. S1 thesis, Universitas Mercu Buana Jakarta - Menteng.
Text (COVER)
41818110112-Muhammad Syukron-01 COVER - Muhammad Syukron.pdf Download (401kB) |
|
Text (ABSTRAK)
41818110112-Muhammad Syukron-02 ABSTRAK - Muhammad Syukron.pdf Download (65kB) |
|
Text (BAB I)
41818110112-Muhammad Syukron-03 Bab 1 - Muhammad Syukron.pdf Restricted to Registered users only Download (90kB) |
|
Text (BAB II)
41818110112-Muhammad Syukron-04 Bab 2 - Muhammad Syukron.pdf Restricted to Registered users only Download (229kB) |
|
Text (BAB III)
41818110112-Muhammad Syukron-05 Bab 3 - Muhammad Syukron.pdf Restricted to Registered users only Download (244kB) |
|
Text (BAB IV)
41818110112-Muhammad Syukron-06 Bab 4 - Muhammad Syukron.pdf Restricted to Registered users only Download (428kB) |
|
Text (BAB V)
41818110112-Muhammad Syukron-07 Bab 5 - Muhammad Syukron.pdf Restricted to Registered users only Download (34kB) |
|
Text (DAFTAR PUSTAKA)
41818110112-Muhammad Syukron-08 Daftar Pustaka - Muhammad Syukron.pdf Restricted to Registered users only Download (107kB) |
|
Text (LAMPIRAN)
41818110112-Muhammad Syukron-09 Lampiran - Muhammad Syukron.pdf Restricted to Registered users only Download (119kB) |
|
Text (LEMBAR KEABSAHAN)
41818110112-Muhammad Syukron-10 Hasil Scan Formulir Pernyataan Keabsahan dan Persetujuan Publikasi Tugas Akhir - Muhammad Syukron.pdf Restricted to Repository staff only Download (185kB) |
Abstract
Perkembangan teknologi informasi telah memainkan peran penting dalam dunia bisnis, namun masih banyak pengusaha yang belum memanfaatkannya secara maksimal, terutama dalam pengelolaan informasi sistem manajemen bisnis. PT. Bratasena Jaya merupakan perusahaan pemasaran dan distribusi yang mendistribusikan produk ke seluruh Indonesia. Dalam pengelolaan stok barang, PT. Bratasena Jaya ingin menghindari barang yang tidak laris di gudang serta memenuhi permintaan pasar. Melalui pengumpulan data purchase order, perusahaan dapat mengidentifikasi produk yang laris dan kurang laris, serta mengklasifikasikan permintaan barang ke dalam kategori Fast Moving, Slow Moving, dan Non-Moving. Namun, untuk optimalisasi pengadaan barang, diperlukan data pesanan pembelian yang menggambarkan permintaan pembelian barang dari pelanggan. Penelitian ini bertujuan untuk mengoptimalkan pengadaan barang di PT. Bratasena Jaya menggunakan analisis clustering dengan metode K- Means. Penelitian ini akan menggunakan metode K-Means Clustering untuk menganalisis data pesanan pembelian dan memberikan rekomendasi pengadaan barang yang optimal. Hasil analisis ini akan dibandingkan dengan metode Naive Bayes untuk mengukur akurasi K-Means Clustering. Diharapkan penelitian ini dapat memberikan solusi yang konkret bagi PT. Bratasena Jaya dalam mengoptimalkan pengadaan barang, mengidentifikasi produk yang diminati, dan produk yang kurang diminati oleh pasar. The development of information technology has played an important role in the business world, but there are still many entrepreneurs who have not utilized it optimally, especially in managing business management system information. PT Bratasena Jaya is a marketing and distribution company that distributes products throughout Indonesia. In managing stock of goods, PT. Bratasena Jaya wants to avoid unsold goods in the warehouse and meet market demand. Through purchase order data collection, the company can identify in-selling and out-of-selling products, as well as classify the demand for goods into Fast Moving, Slow Moving, and Non-Moving categories. However, to optimize the procurement of goods, purchase order data is needed that describes requests for purchase of goods from customers. This research aims to optimize the procurement of goods at PT Bratasena Jaya using clustering analysis with the K-Means method. This research will use the K-Means Clustering method to analyze purchase order data and provide recommendations for optimal procurement of goods. The results of this analysis will be compared with the Naive Bayes method to measure the accuracy of K- Means Clustering. It is expected that this research can provide a concrete solution for PT Bratasena Jaya in optimizing the procurement of goods, identifying products that are in demand, and products that are less in demand by the market.
Item Type: | Thesis (S1) |
---|---|
NIM/NIDN Creators: | 41818110112 |
Uncontrolled Keywords: | pengadaan barang, k-means, clustering, dan data mining Procurement, k-means, clustering, and data mining |
Subjects: | 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem |
Divisions: | Fakultas Ilmu Komputer > Sistem Informasi |
Depositing User: | SILMI KAFFA MARISKA |
Date Deposited: | 14 Aug 2024 04:49 |
Last Modified: | 14 Aug 2024 04:49 |
URI: | http://repository.mercubuana.ac.id/id/eprint/90228 |
Actions (login required)
View Item |