ROTTEN AND FRESH FRUITS CLASSIFICATION USING CNN ALGORITHM

PINTO, JOAO BOSCO SOARES (2022) ROTTEN AND FRESH FRUITS CLASSIFICATION USING CNN ALGORITHM. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (COVER)
01 COVER.pdf

Download (248kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (61kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (78kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (100kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (126kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (628kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (64kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (67kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (575kB)

Abstract

The classification of rotten and fresh fruits is an essential task in the food industry, with significant economic implications for fruit producers. This study proposes a methodology for the classification of rotten and fresh fruits using a convolutional neural network algorithm. The methodology involves dataset collection, data preprocessing, data augmentation, model training, and model evaluation. A dataset of 1400 fruit images labeled as rotten or fresh was collected, and a convolutional neural network model was designed with three convolutional layers, two maxpooling layers, and two fully connected layers. The model achieved an accuracy of 98.04% on the validation set. The results demonstrate the effectiveness of the proposed methodology and highlight the potential of convolutional neural network algorithms in the food industry. The developed system provides a practical and reliable solution to the classification of rotten and fresh fruits, which can lead to significant economic benefits for fruit producers. Keywords: Fruit classification, Freshness detection, Rotten fruit identification, Convolutional Neural Networks (CNN), Deep Learning, Image Processing, Food Industry.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 174
Call Number: SIK/18/23/042
NIM/NIDN Creators: 41519010205
Uncontrolled Keywords: Fruit classification, Freshness detection, Rotten fruit identification, Convolutional Neural Networks (CNN), Deep Learning, Image Processing, Food Industry.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 020 Library and Information Sciences/Perpustakaan dan Ilmu Informasi > 025 Operations, Archives, Information Centers/Operasional Perpustakaan, Arsip dan Pusat Informasi, Pelayanan dan Pengelolaan Perpustakaan > 025.4 Subject Analysis and Control/Subjek Analisis dan Kontrol Perpustakaan > 025.46 Classification of Specific Subject/Klasifikasi Khusus
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 070 Documentary Media, Educational Media, News Media, Journalism, Publishing/Media Dokumenter, Media Pendidikan, Media Berita, Jurnalisme, Penerbitan > 070.1-070.9 Standard Subdivisions of Documentary Media, Educational Media, News Media, Journalism, Publishing/Subdivisi Standar Dari Media Dokumenter, Media Pendidikan, Media Berita, Jurnalisme, Penerbitan > 070.4 Journalism/Jurnalisme, Jurnalistik, Pers > 070.44 Features and Special Topics/Fitur dan Topik Khusus > 070.444 Miscellaneous Information, Advice, Amusement/Berbagai Macam Informasi, Saran, Hiburan
600 Technology/Teknologi > 660 Chemical Engineering and Related Technologies/Teknologi Kimia dan Ilmu yang Berkaitan > 664 Food Technology/Teknologi Pembuatan Makanan Komersial > 664.8 Fruits and Vegetables/Teknologi Pembuatan Makanan dari Buah-buahan, Sayur-Mayur dan Sayuran
Divisions: Fakultas Ilmu Komputer > Sistem Informasi
Depositing User: khalimah
Date Deposited: 02 Nov 2023 03:28
Last Modified: 02 Nov 2023 03:28
URI: http://repository.mercubuana.ac.id/id/eprint/82524

Actions (login required)

View Item View Item