SISTEM MONITORING KEKERINGAN BERDASARKAN NDWI UNTUK PREDIKSI PERUBAHAN KADAR AIR MENGGUNAKAN ALGORITMA NAIVE BAYES (STUDI KASUS: GOMBONG, KEBUMEN, JAWA TENGAH)

FEBRIYANI, AMALIA RIZKI (2021) SISTEM MONITORING KEKERINGAN BERDASARKAN NDWI UNTUK PREDIKSI PERUBAHAN KADAR AIR MENGGUNAKAN ALGORITMA NAIVE BAYES (STUDI KASUS: GOMBONG, KEBUMEN, JAWA TENGAH). S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (365kB) | Preview
[img] Text (BAB I)
02 Bab 1.pdf
Restricted to Registered users only

Download (82kB)
[img] Text (BAB II)
03 Bab 2.pdf
Restricted to Registered users only

Download (270kB)
[img] Text (BAB III)
04 Bab 3.pdf
Restricted to Registered users only

Download (55kB)
[img] Text (BAB IV)
05 Bab 4.pdf
Restricted to Registered users only

Download (580kB)
[img] Text (BAB V)
06 Bab 5.pdf
Restricted to Registered users only

Download (25kB)
[img] Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf
Restricted to Registered users only

Download (81kB)
[img] Text (LAMPIRAN)
08 Lampiran.pdf
Restricted to Registered users only

Download (418kB)

Abstract

Drought is a frequent occurrence in various regions in Indonesia and has a profound impact on agriculture or rice fields. Lack of water or drought and high temperatures are also factors inhibiting rice growth. In rice plants there are three growth phases, namely the vegetative phase, the generative phase and the ripening phase. Water needs in the three phases vary. Rainfall is one of the sources to meet the water needs of rice, but the amount and distribution of rainfall is not evenly distributed every year. Therefore, it is necessary to predict moisture content to maintain rice growth. The identification iS done using the Naïve Bayes algorithm, which is one of the supervised learning algorithms. With the Naïve Bayes algorithm, Sentinel 2A satellite imagery is processed to determine the level of moisture in rice or agricultural land. Key words: Algorithm, Drought, Naïve bayes, Paddy Kekeringan merupakan hal yang sering terjadi di berbagai daerah di Indonesia dan sangat berdampak terhadap pertanian atau lahan padi. Kekurangan air atau kekeringan dan suhu yang tinggi juga menjadi faktor penghambat pertumbuhan padi. Pada tanaman padi terdapat tiga fase pertumbuhan, yaitu fase vegetatif, fase generatif, dan fase pemasakan. Kebutuhan air pada ketiga fase tersebut bervariasi. Curah hujan menjadi salah satu sumber untuk memenuhi kebutuhan air yang dibutuhkan padi, namun jumlah dan penyebaran curah hujan tidak merata setiap tahunnya. Oleh karena itu perlu dilakukan prediksi kadar air untuk mempertahankan pertumbuhan padi. Identifikasi yang dilakukan menggunakan algoritma Naïve Bayes yaitu salah satu algoritma supervised learning. Dengan algoritma Naïve bayes, citra satelit Sentinel 2A diolah untuk mengetahui tingkat kadar air pada lahan padi atau pertanian. Kata kunci: Algoritma, Kekeringan, Naïve bayes, Padi

Item Type: Thesis (S1)
NIM/NIDN Creators: 41817110185
Uncontrolled Keywords: Algoritma, Kekeringan, Naïve bayes, Padi
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem > 003.1 System Identification/Identifikasi Sistem
Divisions: Fakultas Ilmu Komputer > Sistem Informasi
Depositing User: Dede Muksin Lubis
Date Deposited: 13 Oct 2023 02:28
Last Modified: 13 Oct 2023 02:28
URI: http://repository.mercubuana.ac.id/id/eprint/82446

Actions (login required)

View Item View Item