IDENTIFIKASI SEBARAN KONDISI KESEHATAN TANAMAN TEH MENGGUNAKAN ALGORITMA RANDOM FOREST DAN LINEAR DISCRIMINANT ANALYSIS (STUDI KASUS:PERKEBUNAN TEH DI WILAYAH GUNUNG MAS BOGOR)

MAHESA, SYAHDAN (2023) IDENTIFIKASI SEBARAN KONDISI KESEHATAN TANAMAN TEH MENGGUNAKAN ALGORITMA RANDOM FOREST DAN LINEAR DISCRIMINANT ANALYSIS (STUDI KASUS:PERKEBUNAN TEH DI WILAYAH GUNUNG MAS BOGOR). S1 thesis, Universitas Mercu Buana Bekasi.

[img]
Preview
Text
41819210038-Syahdan Mahesa-01 Cover.pdf

Download (693kB) | Preview
[img]
Preview
Text
41819210038-Syahdan Mahesa-02 Abstrak.pdf

Download (29kB) | Preview
[img] Text
41819210038-Syahdan Mahesa-03 BAB 1.pdf
Restricted to Registered users only

Download (183kB)
[img] Text
41819210038-Syahdan Mahesa-04 BAB 2.pdf
Restricted to Registered users only

Download (577kB)
[img] Text
41819210038-Syahdan Mahesa-05 BAB 3.pdf
Restricted to Registered users only

Download (172kB)
[img] Text
41819210038-Syahdan Mahesa-06 BAB 4.pdf
Restricted to Registered users only

Download (377kB)
[img] Text
41819210038-Syahdan Mahesa-07 BAB 5.pdf
Restricted to Registered users only

Download (28kB)
[img] Text
41819210038-Syahdan Mahesa-09 Daftar Pustaka.pdf
Restricted to Registered users only

Download (197kB)
[img] Text
41819210038-Syahdan Mahesa-10 Lampiran.pdf
Restricted to Registered users only

Download (319kB)

Abstract

Tanaman teh merupakan bahan perdagangan yang di konsumsi semua penduduk global. Indonesia telah lama dikenal menjadi negara pembuat teh.Namun, pada praktek budidaya tumbuhan teh terdapat juga permasalahan yg dapat menurunkan produksi pucuk sepertiadanya organisme pengganggu tumbuhan (OPT).Pada penelitian ini data diperoleh menggunakan citra landsat 8 untuk mendeteksi sebaran kesehatan tanaman teh di daerah cisarua kabupaten bogor (Gunung Mas).Karena masalah ini maka dilakukan penelitian menggunakan Algoritma Random Forest dan Linear Discriminant Analysis (LDA) untuk membantu klasifikasi kesehatan pada tanaman teh di daerah cisarua kabupaten bogor (Gunung Mas).Pada penelitian ini juga menggunakan ektraksi fitur yaitu Normalize Difference Vegetation Index (NDVI) untuk membantu memonitoring kondisi kesehatan tanaman teh, di daerah cisarua kabupaten bogor (Gunung Mas) Kata Kunci: LDA,Random Forest,vegetasi,NDVI,Landsat 8 The tea plant is a commercial ingredient that is consumed by all the global population. Indonesia has long been known as a tea-producing country. However, in the practice of tea cultivation there are also problems that can reduce shoot production such as the presence of plant-disturbing organisms (OPT). In this study, data was obtained using Landsat 8 imagery to detect the distribution of tea plant health in the region. Cisarua, Bogor Regency (Gunung Mas). Because of this problem, a study was carried out using the Random Forest Algorithm and Linear Discriminant Analysis (LDA) to help classify the health of tea plants in the Cisarua area, Bogor Regency (Gunung Mas). This study also used feature extraction, namely Normalize Difference Vegetation Index (NDVI) to help monitor the health condition of tea plants, in the Cisarua, Bogor (Gunung Mas) Keywords : LDA,Random Forest,vegetasi,NDV,Landsat 8

Item Type: Thesis (S1)
Call Number CD: FIK/SI 23 022
NIM/NIDN Creators: 41819210038
Uncontrolled Keywords: LDA,Random Forest,vegetasi,NDVI,Landsat 8
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000.01-000.09 Standard Subdivisions of Computer Science, Information and General Works/Subdivisi Standar Dari Ilmu Komputer, Informasi, dan Karya Umum
Divisions: Fakultas Ilmu Komputer > Sistem Informasi
Depositing User: siti maisyaroh
Date Deposited: 03 Oct 2023 06:43
Last Modified: 03 Oct 2023 06:43
URI: http://repository.mercubuana.ac.id/id/eprint/81854

Actions (login required)

View Item View Item