EFEKTIVITAS TRANSFER LEARNING DALAM PENDETEKSIAN PENYAKIT PNEUMONIA MELALUI CITRA X-RAY PARU MANUSIA

WIRATAMA, ARI SATRIA (2023) EFEKTIVITAS TRANSFER LEARNING DALAM PENDETEKSIAN PENYAKIT PNEUMONIA MELALUI CITRA X-RAY PARU MANUSIA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (COVER)
01 COVER.pdf

Download (632kB) | Preview
[img]
Preview
Text (ABSTRAK)
02 ABSTRAK.pdf

Download (211kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (290kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (428kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (300kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (540kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (286kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (244kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Pneumonia is a disease that attacks the human lung system. This disease causes serious problems not only in Indonesia but is a serious problem for people around the world. By doing early detection of pneumonia can reduce mortality. X-ray imaging of the human chest is one of the most widely used to diagnose pneumonia. The X-ray method is a fast and easy method of detecting a disease. In this study, the Transfer Learning method was used to classify chest X-ray images labeled as non-pneumonia and pneumonia lungs. To classify this image recognition, the Google Collaboratory application uses the ResNet50V2, GoogleNet, AlexNet Architecture model. The dataset used for this study was 5856 training data by testing 40 times, the results obtained were an accuracy of 83% and a loss value of 0.4 Keywords : Pneumonia, Citra X-ray, Transfer Learning. Pneumonia merupakan penyakit yang menyerang sistem paru-paru manusia. penyakit ini menyebabkan masalah serius yang tidak hanya di indonesia tetapi menjadi masalah serius untuk orang di seluruh dunia. Dengan melakukan pendekteksian dini pneumonia dapat mengurangi angka kematian. pencitraan X-ray dada manusia adalah salah satu yang paling banyak digunakan untuk mendiagnosis penyakit pneumonia. metode X-ray merupakan metode yang cepat dan mudah dalam mendeteksi suatu penyakit. Dalam penelitian ini menggunakan metode Transfer Learning untuk mengklasifikasikan gambar citra x-ray rontgen dada yang berlabel non-pneumonia dan paru-paru pneumonia. Untuk melakukan klasifikasi pengenalan citra ini digunakannya aplikasi Google Collaboratory dengan menggunakan model Arsitektur ResNet50V2, GoogleNet,AlexNet. Dataset yang digunakan untuk penelitian ini sebanyak 5856 data training dengan melakukan pengujian sebanyak 40 kali, maka diperoleh hasil tertinggi akurasi sebesar 97% dan nilai loss 0.4. Kata Kunci : Pneumonia, Citra X-ray, Transfer Learning.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 092
NIM/NIDN Creators: 41519010122
Uncontrolled Keywords: Pneumonia, Citra X-ray, Transfer Learning.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem > 003.5 Computer Modeling and Simulation/Model dan Simulasi Komputer
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: CALVIN PRASETYO
Date Deposited: 22 Sep 2023 02:34
Last Modified: 22 Sep 2023 02:34
URI: http://repository.mercubuana.ac.id/id/eprint/81348

Actions (login required)

View Item View Item