ZULFIYANI, RIZKA (2023) RANCANG BANGUN ALAT PENGUKUR TEKANAN DARAH UNTUK DETEKSI TINGKAT RISIKO CARDIOVASCULAR DISEASE DENGAN METODE FUZZY LOGIC MAMDANI BERBASIS IoT. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (COVER)
Cover.pdf Download (505kB) | Preview |
|
|
Text (ABSTRAK)
Abstrak.pdf Download (204kB) | Preview |
|
Text (BAB I)
BAB I.pdf Restricted to Registered users only Download (262kB) |
||
Text (BAB II)
BAB II.pdf Restricted to Registered users only Download (854kB) |
||
Text (BAB III)
BAB III.pdf Restricted to Registered users only Download (1MB) |
||
Text (BAB IV)
BAB IV.pdf Restricted to Registered users only Download (762kB) |
||
Text (BAB V)
BAB V.pdf Restricted to Registered users only Download (202kB) |
||
Text (DAFTAR PUSTAKA)
Daftar Pustaka.pdf Restricted to Registered users only Download (293kB) |
||
Text (LAMPIRAN)
Lampiran.pdf Restricted to Registered users only Download (466kB) |
Abstract
Nearly 3 out of 4 deaths that occur in the world are caused by noncommunicable diseases (WHO, 2022). Around 73% of deaths in Indonesia are caused by non-communicable diseases and cardiovascular disease accounts for the highest number of 35% (WHO, 2018). Cardiovascular disease is a noncommunicable disease, but people with non-communicable diseases often do not realize they have the disease until signs, symptoms and complications appear. This study aims to design a Blood Pressure Measurement system for Detecting Cardiovascular Disease Risk Levels with the IoT-Based Mamdani Fuzzy Logic Method. The working principle of this prototype is to measure blood pressure using the MPX5050GP pressure sensor then a 4x4 keypad is used to input the parameters which also contribute to increasing the risk of cardiovascular disease, namely cholesterol level and body mass index. The data obtained will then be collected and then processed using fuzzy logic using the mamdani method to get a cardiovascular disease risk level value then the results will be displayed on a 16x2 LCD and sent wirelessly and displayed on the ThingSpeak IoT Platform. The data processor uses the ATMega328 microcontroller which is embedded in Arduino Uno and ESP32 as the internet of things. Based on the analysis and tests that have been carried out, the accuracy of blood pressure measurements in the engineering design is 98.2% for systolic blood pressure measurements and 97.83% for diastolic blood pressure measurements. The average delay time when ESP32 sends data and the ThingSpeak IoT Platform displays data is 15.6 seconds. The results of the accuracy for predicting the risk of cardiovascular disease in the design compared to the fuzzy logic calculations using the Mamdani method in Matlab is 99.69%. Keywords: Cardiovascular Disease, Fuzzy logic Mamdani, IoT, Pressure Sensor MPX5050GP Hampir 3 dari 4 kematian yang terjadi di dunia disebabkan oleh penyakit tidak menular (WHO, 2022). Sekitar 73% kematian di Indonesia disebabkan oleh penyakit tidak menular dan cardiovascular disease menyumbang angka tertinggi sebesar 35% (WHO,2018). Cardiovascular disease merupakan penyakit tidak menular namun penderita penyakit tidak menular seringkali tidak menyadari dirinya mengidap penyakit hingga tanda, gejala, dan komplikasi muncul. Penelitian ini bertujuan merancang sistem Pengukur Tekanan Darah untuk Deteksi Tingkat Risiko Cardiovascular Disease dengan Metode Fuzzy logic Mamdani Berbasis IoT. Prinsip kerja dari prototipe ini adalah mengukur tekanan darah menggunakan sensor tekanan MPX5050GP kemudian dengan keypad 4x4 digunakan untuk menginputkan parameter-parameter yang turut menjadi sebab dalam meningkatkan risiko cardiovascular disease yaitu tingkat kolesterol dan indeks massa tubuh. Data yang diperoleh selanjutnya akan ditampung kemudian diolah dengan fuzzy logic menggunakan metode mamdani untuk mendapatkan nilai tingkat risiko cardiovascular disease kemudian hasilnya akan ditampilkan pada LCD 16x2 dan dikirim secara wireless serta ditampilkan pada Platform IoT ThingSpeak. Pengolah data menggunakan Mikrokontroler ATMega328 yang sudah tertanam pada Arduino Uno serta ESP32 sebagai internet of things. Berdasarkan analisa dan pengujian yang telah dilakukan didapatkan hasil akurasi pengukuran tekanan darah pada rancang bangun adalah sebesar 98,2% untuk pengukuran tekanan darah sistol dan 97,83% untuk pengukuran tekanan darah diastol. Waktu tunda rata-rata ketika ESP32 mengirim data dan IoT Platform ThingSpeak menampilkan data sebesar 15,6 detik. Hasil akurasi untuk memprediksi risiko cardiovascular disease pada rancang bangun yang dibandingkan dengan perhitungan fuzzy logic dengan metode Mamdani pada Matlab adalah sebesar 99,69%. Kata Kunci: Cardiovascular Disease, Fuzzy logic Mamdani, IoT, Sensor Tekanan MPX5050GP.
Item Type: | Thesis (S1) |
---|---|
Call Number CD: | FT/ELK. 23 130 |
Call Number: | ST/14/23/127 |
NIM/NIDN Creators: | 41421120032 |
Uncontrolled Keywords: | Cardiovascular Disease, Fuzzy logic Mamdani, IoT, Sensor Tekanan MPX5050GP. |
Subjects: | 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn |
Divisions: | Fakultas Teknik > Teknik Elektro |
Depositing User: | Sekar Mutiara |
Date Deposited: | 20 Sep 2023 04:10 |
Last Modified: | 20 Sep 2023 04:10 |
URI: | http://repository.mercubuana.ac.id/id/eprint/80893 |
Actions (login required)
View Item |