PENERAPAN MULTI-LABEL IMAGE CLASSIFICATION MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK SORTIR BOTOL MINUMAN

TRISIAWAN, INGGIS KURNIA (2021) PENERAPAN MULTI-LABEL IMAGE CLASSIFICATION MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK SORTIR BOTOL MINUMAN. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
1. COVER.pdf

Download (30kB) | Preview
[img]
Preview
Text (ABSTRAK)
5. ABSTRAK.pdf

Download (50kB) | Preview
[img]
Preview
Text (LEMBAR PERNYATAAN)
3. HALAMAN PERNYATAAN.pdf

Download (600kB) | Preview
[img]
Preview
Text (LEMBAR PENGESAHAN)
2. HALAMAN PENGESAHAN.pdf

Download (189kB) | Preview
[img]
Preview
Text (KATA PENGANTAR)
4. KATA PENGANTAR.pdf

Download (91kB) | Preview
[img]
Preview
Text (DAFTAR ISI)
6. DAFTAR ISI.pdf

Download (55kB) | Preview
[img]
Preview
Text (DAFTAR TABEL)
8. DAFTAR TABEL.pdf

Download (43kB) | Preview
[img]
Preview
Text (DAFTAR GAMBAR)
7. DAFTAR GAMBAR.pdf

Download (66kB) | Preview
[img] Text (BAB I)
9. BAB I.pdf
Restricted to Registered users only

Download (66kB)
[img] Text (BAB II)
10. BAB II.pdf
Restricted to Registered users only

Download (353kB)
[img] Text (BAB III)
11. BAB III.pdf
Restricted to Registered users only

Download (841kB)
[img] Text (BAB IV)
12. BAB IV.pdf
Restricted to Registered users only

Download (368kB)
[img] Text (BAB V)
13. BAB V.pdf
Restricted to Registered users only

Download (90kB)
[img] Text (DAFTAR PUSTAKA)
14. DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (106kB)
[img] Text (LAMPIRAN)
15. LAMPIRAN.pdf
Restricted to Registered users only

Download (44kB)

Abstract

In Fast Moving Consumer Goods (FMCG) industry such as a water bottle, quality control plays an important role to maintain good products; therefore, a fast and reliable method is needed to analyze field data and provide information that can help to determine product quality. During production in the factory, a water bottle often has multiple defects due to errors in the machine, human interventions, etc. For example, miss or incorrectly installed caps and labels, as well as underfilled water on the bottle. All of those issues can reduce the quality of the product shipped. To overcome that, visual inspection becomes a mandatory technique in the production lines. Traditional water bottle inspection methods often require multiple cameras and devices to detect multiple defects on the product, each one is used for detecting a different type of issue. In this paper, a method called Multi-Label Image Classification with Convolutional Neural Network (CNN) as an algorithm is being used to detect multiple defects on the water bottle at once. There are six class labels i.e underfilled water, empty water, broken cap, missing cap, broken label, missing label, and each one represents a probability of the defects is present on the bottle. Several combination of feature learning layer and fully connected layer on the CNN are used to extract patterns and classifying the input picture. To facilitate related study, a large-scale water bottle picture dataset is collected, which is associated with six predefined labels. The experiments demonstrate that the proposed model can achieve 98,526% accuracy prediction when tested with new datasets, and 97,71% average accuracy during testing with 10-fold cross-validation. Keywords: Artificial Intelegance (AI), Multi-Label Image Classification, Convolutional Neural Network (CNN), Water Bottle Inspection. Dalam industri Fast Moving Consumer Goods (FMCG) seperti air minum kemasan, quality control berperan penting untuk menjaga produk yang baik, oleh karena itu diperlukan metode yang cepat dan andal untuk menganalisis data lapangan dan memberikan informasi yang dapat membantu dalam menentukan kualitas produk. Selama proses produksi di pabrik, botol air minum sering kali memiliki beberapa cacat misalnya, tutup dan label yang tidak ada atau tidak terpasang dengan benar, serta air yang kurang terisi pada botol. Semua masalah tersebut dapat menurunkan kualitas produk yang dikirim ke konsumen. Untuk mengatasinya, inspeksi visual menjadi teknik wajib di lini produksi. Metode inspeksi visual tradisional sering kali memerlukan beberapa kamera dan perangkat untuk mendeteksi beberapa cacat pada produk, masing-masing digunakan untuk mendeteksi jenis masalah yang berbeda. Dalam penelitian ini, digunakan metode Multi-Label Image Classification dengan Convolutional Neural Network (CNN) sebagai algoritma untuk mendeteksi beberapa cacat pada botol air sekaligus. Terdapat enam class label yaitu isi kurang, isi kosong, tutup rusak, tutup tidak ada, label rusak, dan label tida ada. Masing-masing class label tersebut mewakili kemungkinan adanya cacat yang ada pada botol. Beberapa kombinasi feature learning layer dan fully connected layer digunakan untuk mengekstrak pola dan mengklasifikasikan gambar masukan. Untuk memfasilitasi penelitian ini, dikumpulan dataset gambar botol air dengan skala besar, dimana didalam datset tersebut merepresentasikan enam class label yang telah ditentukan. Saat diuji dengan dataset baru, model CNN mendapatkan hasil akurasi prediksi 98,526%, dan mendapat rata-rata akurasi sebesar 97,71% ketika diuji dengan 10-fold cross validation. Kata kunci: Artificial Intelegance (AI), Multi-Label Image Classification, Convolutional Neural Network (CNN), Sortir botol minuman.

Item Type: Thesis (S1)
NIM/NIDN Creators: 41419110179
Uncontrolled Keywords: Artificial Intelegance (AI), Multi-Label Image Classification, Convolutional Neural Network (CNN), Sortir botol minuman.
Subjects: 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: Dede Muksin Lubis
Date Deposited: 31 Jan 2022 04:05
Last Modified: 31 Jan 2022 04:05
URI: http://repository.mercubuana.ac.id/id/eprint/54860

Actions (login required)

View Item View Item