ANUGRAH, MUHAMMAD RIZQI (2020) SISTEM PEMANTAUAN VOLUME INFUS BERBASIS INTERNET OF THINGS (IoT) MENGGUNAKAN ESP32. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (204kB) | Preview |
|
Text (BAB I)
02 Bab 1.pdf Restricted to Registered users only Download (92kB) |
||
Text (BAB II)
03 Bab 2.pdf Restricted to Registered users only Download (318kB) |
||
Text (BAB III)
04 Bab 3.pdf Restricted to Registered users only Download (431kB) |
||
Text (BAB IV)
05 Bab 4.pdf Restricted to Registered users only Download (263kB) |
||
Text (BAB V)
06 Bab 5.pdf Restricted to Registered users only Download (27kB) |
||
Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf Restricted to Registered users only Download (49kB) |
||
Text (LAMPIRAN)
08 Lampiran.pdf Restricted to Registered users only Download (26kB) |
Abstract
Installation of infusion in hospitals in Indonesia is as much as (17.11%) and .according to World Health Organization (WHO) surveillance data, the incidence of infusion at emergency .departments is quite high at 85% per year and 120 million. people of 190. million patients treated in hospitals using infusions. 70% of nurses are not. compliant in implementing the standards set standards. To solve .that problem then infuse fluid volume monitoring by real time and computerized .system is made. This system use ESP-32 microcontroller as a controller, . Raspberry Pi used as mini PC to show Node-Red. Load cell sensor read the .weight of infuse fluid and processed by ESP-32 and then the data sent to Node-Red software so become monitoring. dashboard by real time. The sensor reading results will be showed in volume. form on LCD (Liquid Crystal Display) and Node-Red dashboard monitoring IoT. (Internet of Things) platform. The infuse. volume monitoring system that has been made used to help the nurses when the. nurses check the infuse in patient room. The nurse can monitored the condition. of the infuse in nurse station by accessing the Node-Red dashboard monitoring .website using web browser on PC (Personal Computer) and Handphone. Node-Red dashboard .use gauge and chart display. When gauge display turning red it means that. infuse fluid is almost empty. Buzzer is used on the device to make a sound when .the infuse is less than 50 ml. The device reading has error value about 0.0085%. and has reading accuracy about 99.992%. Keywords: Infuse, ESP-32, Load Cell, Internet of Things, Node-Red .Pemasangan infus di Rumah Sakit di Indonesia sebanyak (17,11%) Dan menurut .data surveilans World Health Organisation (WHO) dinyatakan bahwa angka .kejadian pemasangan infus di Instalasi Gawat Darurat cukup tinggi yaitu 85% per tahun dan 120 juta. orang dari 190 juta pasien yang di rawat di rumah sakit menggunakan infus. serta didapatkan juga 70% perawat tidak patuh dalam melaksanakan.standar pemasangan infus berdasarkan standar yang telah ditetapkan. Guna .mengatasi masalah tersebut dibuatlah sistem monitoring volume cairan infus secara real time .dan terkomputerisasi. Sistem tersebut menggunakan mikrokontroler ESP-32 .sebagai kontroler, Raspberry Pi berfungsi sebagai mini PC untuk menampilkan. Node-RED. Sensor load cell membaca berat cairan infus dan diproses di ESP-32 .dan selanjutnya data dikirim ke software Node-RED sehingga menjadi dashboard. monitoring secara real time. Hasil pembacaan sensor ditampilkan .dalam bentuk volume yang ditampilkan pada LCD (Liquid Crystal Display) dan .platform IoT (Internet of Things) dashboard monitoring Node-RED. Sistem. monitoring volume infus yang dibuat berfungsi untuk membantu petugas. medis dalam pengecekan cairan infus pada kamar pasien. Petugas medis dapat .memantau kondisi infus pada ruang jaga dengan mengakses alamat dashboard monitoring Node-RED .menggunakan web browser pada PC (Personal Computer) dan HP (Handphone). .Tampilan dashboard Node-RED berbentuk gauge dan chart, apabila tampilan gauge berubah warna .menjadi merah menandakan cairan infus hampir habis. Pada alat terdapat .buzzer yang berbunyi apabila kondisi infus di bawah <50 ml. Pembacaan alat .mempunyai nilai error sebesar 0.0085 % dan mempunyai akurasi pembacaan sebesar 99.992 %. Kata kunci: Infus, ESP-32, Load Cell, Internet of Things, Node-RED
Actions (login required)
View Item |