RAMADHANI, MUHAMMAD (2019) IMPLEMENTATION OF DATA MINING ANALYSIS TO DETERMINE THE TUNA FISHING ZONE USING DBSCAN ALGORITHM. S1 thesis, Universitas Mercu Buana Jakarta.
Text (JURNAL MAHASISWA)
For Yudisium_Lembar Yudisium_Muhammad Ramadhani_41515010087.pdf Restricted to Registered users only Download (1MB) |
Abstract
Abstract— The aim of this study is to map the tuna fishing zones based on the daily fish catch data from the Hindian Ocean. With the study, it is expected to deliver a potential tuna fishing zones mapping, where it is based on the number of catch along with its spatial data. The study utilized a data mining approach with DBSCAN algorithm as the method to cluster the data. The study yields information that the Bigeye tuna is dominated the catch in the west monsoon, while Yellowfin tuna dominated the catch in the east monsoon. Based on the trial using the DBSCAN algorithm, we know that the optimal Eps and MinPts value are 1.5 and 5 respectively to generate a convergence cluster. Key words: Data Mining, DBSCAN Algorithm, Spatial Analysis, Clustering, Rapidminer. Abstrak—Tujuan dari penelitian ini adalah untuk memetakan zona penangkapan tuna berdasarkan data tangkapan ikan harian dari Samudra Hindia. Dengan studi ini, diharapkan untuk memberikan pemetaan zona penangkapan ikan tuna potensial, di mana ia didasarkan pada jumlah tangkapan bersama dengan data spasialnya. Penelitian ini menggunakan pendekatan penambangan data dengan algoritma DBSCAN sebagai metode untuk mengelompokkan data. Studi ini menghasilkan informasi bahwa tuna Bigeye mendominasi tangkapan di musim barat, sedangkan tuna Yellowfin mendominasi tangkapan di musim timur. Berdasarkan percobaan menggunakan algoritma DBSCAN, kita tahu bahwa nilai Eps dan MinPts yang optimal adalah 1,5 dan 5 masing-masing untuk menghasilkan cluster konvergensi. Kata kunci: Data Mining, DBSCAN Algorithm, Spatial Analysis, Clustering, Rapidminer
Actions (login required)
View Item |