ZUFAR, HELMI (2026) SISTEM KEAMANAN AKSES RUANGAN MENGGUNAKAN RADIO FREQUENCY IDENTIFICATION (RFID) DAN FACE RECOGNITION BERBASIS INTERNET OF THINGS. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
COVER.pdf Download (692kB) | Preview |
|
|
Text (BAB I)
BAB 1.pdf Restricted to Registered users only Download (104kB) |
||
|
Text (BAB II)
BAB 2.pdf Restricted to Registered users only Download (224kB) |
||
|
Text (BAB III)
BAB 3.pdf Restricted to Registered users only Download (704kB) |
||
|
Text (BAB IV)
BAB 4.pdf Restricted to Registered users only Download (1MB) |
||
|
Text (BAB V)
BAB 5.pdf Restricted to Registered users only Download (26kB) |
||
|
Text (DAFTAR PUSTAKA)
DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (89kB) |
||
|
Text (LAMPIRAN)
LAMPIRAN.pdf Restricted to Registered users only Download (325kB) |
Abstract
This research aims to design and implement a room access security system using Radio Frequency Identification (RFID) and Face Recognition technologies based on the Internet of Things (IoT) to improve security levels, authentication accuracy, and access management effectiveness. The system applies two-factor authentication, consisting of RFID card identification and biometric facial verification. The main components used include a Raspberry Pi 5 as the central controller, an RC522 RFID reader, an AKona USB webcam, Dlib and OpenCV libraries for image processing, a solenoid door lock as the locking mechanism, and a web-based monitoring system integrated with a MySQL database for real-time access logging. The research method employed is an experimental approach with system testing scenarios that include RFID reading and facial recognition under various conditions. Purposive sampling was applied by considering variations in RFID reading distance, the use of facial accessories, and differences between registered and unregistered users. Data analysis was conducted using descriptive quantitative methods by measuring authentication success rate, facial recognition accuracy, and system response time. Based on the measurement and testing results, the RC522 RFID module achieved a 100% successful reading rate at an effective distance of 2–4 cm, while the Dlib-based face recognition system reached an accuracy of up to 94% under normal lighting conditions. In addition, the system was able to record and display access data in real time through the monitoring website without significant delay. Therefore, it can be concluded that the developed room access security system operates optimally, meets the measured performance parameters, and effectively enhances security and reliability in room access management through the implementation of IoT-based two-factor authentication. Keywords: Security System, RFID, Face Recognition, Internet of Things, Raspberry Pi 5 Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem keamanan akses ruangan menggunakan teknologi Radio Frequency Identification (RFID) dan Face Recognition berbasis Internet of Things (IoT) guna meningkatkan tingkat keamanan, akurasi autentikasi, serta efektivitas pengelolaan akses ruangan. Sistem dirancang dengan menerapkan autentikasi dua faktor, yaitu identifikasi kartu RFID dan verifikasi biometrik wajah. Perangkat utama yang digunakan meliputi Raspberry Pi 5 sebagai pusat kendali, RFID Reader RC522, webcam USB AKona, toolkit Dlib dan OpenCV untuk pengolahan citra, solenoid door lock sebagai pengunci pintu, serta website dan database MySQL untuk monitoring dan pencatatan data akses secara real-time. Metode penelitian yang digunakan adalah metode eksperimental dengan skenario pengujian yang mencakup pengujian pembacaan RFID dan pengenalan wajah pada berbagai kondisi. Teknik pengambilan sampel dilakukan secara purposive sampling dengan mempertimbangkan variasi jarak pembacaan RFID, penggunaan aksesoris wajah, serta perbedaan antara pengguna terdaftar dan tidak terdaftar. Analisis data dilakukan secara deskriptif kuantitatif dengan parameter tingkat keberhasilan autentikasi, akurasi pengenalan wajah, dan waktu respons sistem. Berdasarkan hasil pengukuran dan pengujian sistem, modul RFID RC522 menunjukkan tingkat keberhasilan pembacaan sebesar 100% pada jarak efektif 2– 4 cm, sementara sistem face recognition berbasis Dlib menghasilkan tingkat akurasi hingga 94% pada kondisi pencahayaan normal. Selain itu, sistem mampu mencatat dan menampilkan data akses secara real-time melalui website monitoring tanpa keterlambatan signifikan. Dengan demikian, dapat disimpulkan bahwa sistem keamanan akses ruangan yang dikembangkan telah bekerja secara optimal, memenuhi parameter kinerja yang diukur, serta efektif dalam meningkatkan keamanan dan keandalan pengelolaan akses ruangan melalui penerapan autentikasi dua faktor berbasis IoT. Kata kunci: Sistem Keamanan, RFID, Face Recognition, Internet of Things, Raspberry Pi 5
Actions (login required)
![]() |
View Item |
