CONVOLUTIONAL FEATURE OPTIMIZATION FOR LUNG DISEASE CLASSIFICATION ON IMAGE DATA

GUTERRES, DAVID GINOLA (2026) CONVOLUTIONAL FEATURE OPTIMIZATION FOR LUNG DISEASE CLASSIFICATION ON IMAGE DATA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
Cover.pdf

Download (730kB) | Preview
[img] Text (BAB I)
Chapter I.pdf
Restricted to Registered users only

Download (108kB)
[img] Text (BAB II)
Chapter II.pdf
Restricted to Registered users only

Download (189kB)
[img] Text (BAB III)
Chapter III.pdf
Restricted to Registered users only

Download (188kB)
[img] Text (BAB IV)
Chapter IV.pdf
Restricted to Registered users only

Download (561kB)
[img] Text (BAB V)
Chapter V.pdf
Restricted to Registered users only

Download (29kB)
[img] Text (DAFTAR PUSTAKA)
References.pdf
Restricted to Registered users only

Download (96kB)
[img] Text (LAMPIRAN)
Attachment.pdf
Restricted to Registered users only

Download (317kB)

Abstract

Lung diseases such as pneumonia, tuberculosis, and chronic obstructive pulmonary disease (COPD) present significant global health challenges, requiring accurate and efficient diagnostic methods. Convolutional Neural Networks (CNNs) have shown remarkable capabilities in medical image analysis, particularly in disease classification using chest X-rays and computed tomography (CT) scans. This study explores the optimization of CNN models for lung disease classification by implementing advanced preprocessing techniques, hyperparameter tuning, and dataset augmentation. Using publicly available datasets, various CNN architectures, including ResNet50, Efficient Net and Retina Net are evaluate to determine their effectiveness in distinguishing between different lung disease categories. The study achieves an optimized accuracy of up to 98.89%, demonstrating the potential of deep learning in assisting medical professionals with early and precise lung disease detection. Future research directions include integrating hybrid models, such as CNN-LSTM and ensemble learning techniques, to further improve classification accuracy and robustness. Keywords : (CNNs), X-rays, Computed Tomography (CT) scans, ResNet50, EfficientNet, RetinaNet, CNN-LSTM. Penyakit paru-paru seperti pneumonia, tuberkulosis, dan penyakit paru obstruktif kronis (PPOK) merupakan tantangan kesehatan global yang signifikan, yang memerlukan metode diagnostik yang akurat dan efisien. Jaringan Saraf Konvolusional (CNN) telah menunjukkan kemampuan luar biasa dalam analisis gambar medis, terutama dalam klasifikasi penyakit menggunakan sinar-X dada dan pemindaian tomografi komputer (CT). Studi ini mengeksplorasi optimasi model CNN untuk klasifikasi penyakit paru-paru dengan menerapkan teknik prapemrosesan canggih, penyesuaian hiperparameter, dan augmentasi dataset. Menggunakan dataset yang tersedia secara publik, berbagai arsitektur CNN, termasuk ResNet50, Efficient Net, dan Retina Net, dievaluasi untuk menentukan efektivitasnya dalam membedakan antara kategori penyakit paru-paru yang berbeda. Studi ini mencapai akurasi optimal hingga 98,89%, menunjukkan potensi pembelajaran mendalam dalam membantu tenaga medis dalam deteksi dini dan akurat penyakit paru-paru. Arah penelitian masa depan meliputi integrasi model hibrida, seperti CNN-LSTM dan teknik pembelajaran ensambel, untuk lebih meningkatkan akurasi dan ketahanan klasifikasi. Kata Kunci : (CNN), Sinar-X, Pemindaian Tomografi Terkomputasi (CT), ResNet50, EfficientNet, RetinaNet, CNN-LSTM.

Item Type: Thesis (S1)
NIM/NIDN Creators: 41522010208
Uncontrolled Keywords: (CNN), Sinar-X, Pemindaian Tomografi Terkomputasi (CT), ResNet50, EfficientNet, RetinaNet, CNN-LSTM.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 153 Conscious Mental Process and Intelligence/Intelegensia, Kecerdasan Proses Intelektual dan Mental > 153.1 Memory and Learning/Memori dan Pembelajaran > 153.15 Learning/Pembelajaran
600 Technology/Teknologi > 610 Medical, Medicine, and Health Sciences/Ilmu Kedokteran, Ilmu Pengobatan dan Ilmu Kesehatan > 616 Diseases/Penyakit > 616.2 Diseases of Respiratory Systems/Penyakit pada Sistem Respirator
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 04 Feb 2026 01:29
Last Modified: 04 Feb 2026 01:29
URI: http://repository.mercubuana.ac.id/id/eprint/100821

Actions (login required)

View Item View Item