ARITONANG, ERLINDA SISTIA (2025) ANALISIS SENTIMEN TERHADAP PENGGUNA QRIS PADA APLIKASI GOPAY PADA ULASAN GOOGLE PLAY STORE DENGAN METODE SUPPORT VECTOR MACHINE. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
001 Cover.pdf Download (515kB) | Preview |
|
![]() |
Text (BAB I)
002 Bab I.pdf Restricted to Registered users only Download (211kB) |
|
![]() |
Text (BAB II)
003 Bab II.pdf Restricted to Registered users only Download (218kB) |
|
![]() |
Text (BAB III)
004 Bab III.pdf Restricted to Registered users only Download (185kB) |
|
![]() |
Text (BAB IV)
005 Bab IV.pdf Restricted to Registered users only Download (390kB) |
|
![]() |
Text (BAB V)
006 Bab V.pdf Restricted to Registered users only Download (143kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
007 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (148kB) |
|
![]() |
Text (LAMPIRAN)
008 LAMPIRAN.pdf Restricted to Registered users only Download (363kB) |
Abstract
This study aims to analyze user sentiment towards the use of QRIS on the GoPay application through reviews available on the Google Play Store. The data used consists of over 2.000 user reviews, which were processed through several stages: preprocessing, manual labeling, and feature extraction using the TF-IDF method. The main algorithm used for sentiment classification is Support Vector Machine (SVM), which is compared with Naive Bayes and Decision Tree algorithms. Evaluation was conducted using accuracy, precision, recall, and F1- score metrics. The results show that the SVM algorithm provides the best performance in classifying user opinions into positive, negative, and netral sentiments. This research is expected to serve as a reference for the development of public opinion analysis systems based on digital payment techonologies such as QRIS, Keywords: QRIS,GoPay, Sentiment Analysis, Support Vector Machine, Naive Bayes, Decision Tree, TF – IDF, Google Play Store. Penelitian ini bertujuan untuk menganalisis sentimen pengguna terhadap penggunaan QRIS pada aplikasi GoPay melalui ulasan yang tersedia di Google Play Store. Data yang digunakan berupa 2000 lebih ulasan pengguna yang kemudian diproses melalui tahap preprocessing,pelabelan secraa manual, serta ekstraksi fitur menggunakan metode TF – IDF. Algoritma utama yang digunakan dalam klasifikasi sentimen ini adalah support Vector Machine (SVM), dengan perbandingan terhadap algoritma Naive Bayes dan Decision Tree. Evaluasi dilakukan menggunakan metrik akurasi, presisi,recall, dan f1-score. Hasil Penelitian menunjukkan bahwa algoritma SVM memberikan performa terbaik dalam mengklasifikasikan opini pengguna menjadi sentimen positif, negatif, dan netral. Penelitian ini diharapkan dapat menjadi acuan dalam pengembangan sistem analisis opini publik berbasis teknologi pembayaran digital seperti QRIS. Kata Kunci: QRIS, GoPay, Analisis Sentimen. SVM, Naive Bayes, Decision Tree, TF-IDF-Google Play Store.
Actions (login required)
![]() |
View Item |