ELMIANTO, RICKY (2025) RANCANG BANGUN MONITORING BERBASIS IOT UNTUK DETEKSI DINI GANGGUAN PADA KETIDAK SEIMBANGAN BEBAN DAN LEVELING MINYAK PADA TRAFO DISTRIBUSI MENGGUNAKAN NODEMCU ESP32. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (316kB) | Preview |
|
![]() |
Text (BAB I)
02 Bab 1.pdf Restricted to Registered users only Download (37kB) |
|
![]() |
Text (BAB II)
03 Bab 2.pdf Restricted to Registered users only Download (257kB) |
|
![]() |
Text (BAB III)
04 Bab 3.pdf Restricted to Registered users only Download (72kB) |
|
![]() |
Text (BAB IV)
05 Bab 4.pdf Restricted to Registered users only Download (1MB) |
|
![]() |
Text (BAB V)
06 Bab 5.pdf Restricted to Registered users only Download (26kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf Restricted to Registered users only Download (34kB) |
|
![]() |
Text (LAMPIRAN)
08 Lampiran.pdf Restricted to Registered users only Download (837kB) |
Abstract
The availability of reliable electricity is a vital component in supporting community activities and the industrial sector. One of the important components in the distribution system is the transformer, which functions to lower the voltage to a level that is safe for consumers. However, disturbances such as load imbalance between phases and a decrease in insulation oil levels can accelerate transformer failure. Therefore, a monitoring system that is able to detect disturbances early is needed. This study aims to design and implement an Internet of Things (IoT)-based monitoring system using the ESP32 NodeMCU which is able to detect load imbalances and oil level drops in distribution transformers in real-time. The method used is an experiment with the stages of system design, hardware and software implementation, and functionality testing. The PZEM-004T sensor is used to read the current and voltage, while the ultrasonic sensor is used to monitor the oil level. The data is sent to the web-based database platform and the Telegram app for automatic notifications. The results showed that the system was able to accurately monitor the condition of the transformer. In balanced load testing, the current imbalance < 2.5%, while in unbalanced load testing, the imbalance value reaches >140% and notifications are sent automatically. A drop in oil levels of up to 35% was also successfully detected and sent as a warning. The system works stably and responsively. In conclusion, this IoT-based monitoring system is effective as an early detection solution for transformer disturbances. It is suggested that this technology be implemented more widely by PLN to improve the efficiency and reliability of electricity distribution. Keywords: IoT, Distribution Transformer, Load Imbalance Ketersediaan listrik yang andal merupakan komponen vital dalam mendukung aktivitas masyarakat dan sektor industri. Salah satu komponen penting dalam sistem distribusi adalah trafo, yang berfungsi menurunkan tegangan ke level aman bagi konsumen. Namun, gangguan seperti ketidakseimbangan beban antar fasa dan penurunan level minyak isolasi dapat mempercepat kerusakan trafo. Oleh karena itu, dibutuhkan sistem pemantauan yang mampu mendeteksi gangguan secara dini. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem monitoring berbasis Internet of Things (IoT) menggunakan NodeMCU ESP32 yang mampu mendeteksi ketidakseimbangan beban dan penurunan level minyak pada trafo distribusi secara real-time. Metode yang digunakan adalah eksperimen dengan tahapan perancangan sistem, implementasi perangkat keras dan lunak, serta pengujian fungsionalitas. Sensor PZEM-004T digunakan untuk membaca arus dan tegangan, sedangkan sensor ultrasonik digunakan untuk memantau level minyak. Data dikirim ke platform database berbasis web dan aplikasi Telegram untuk notifikasi otomatis. Hasil menunjukkan sistem mampu memantau kondisi trafo secara akurat. Pada pengujian beban seimbang, ketidakseimbangan arus < 2,5%, sementara pada pengujian beban tidak seimbang, nilai imbalance mencapai >140% dan notifikasi terkirim secara otomatis. Penurunan level minyak hingga 35% juga berhasil dideteksi dan dikirim sebagai peringatan. Sistem bekerja stabil dan responsif. Kesimpulannya, sistem monitoring berbasis IoT ini efektif sebagai solusi deteksi dini gangguan trafo. Disarankan agar teknologi ini diimplementasikan lebih luas oleh PLN guna meningkatkan efisiensi dan keandalan distribusi listrik. Kata Kunci: IoT, Trafo Distribusi, Ketidakseimbangan Beban
Actions (login required)
![]() |
View Item |