PRATIWI, CAROLINE ANANDA (2025) ANALISIS SENTIMEN ULASAN PENGGUNA PADA APLIKASI BANK SAQU DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (325kB) | Preview |
|
![]() |
Text (BAB I)
02 Bab 1.pdf Restricted to Registered users only Download (36kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (239kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (68kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (616kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (202kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf Restricted to Registered users only Download (95kB) |
|
![]() |
Text (LAMPIRAN)
08 Lampiran.pdf Restricted to Registered users only Download (505kB) |
Abstract
This study aims to automatically analyze user review sentiment for the Saqu Bank app on the Google Play Store. The main challenge is the large number of reviews, which are difficult to analyze manually, requiring an efficient method. This study used web scraping techniques for data collection and the Multinomial Naive Bayes algorithm to classify review sentiment into positive, negative, and neutral. The research process involved the Knowledge Discovery in Database (KDD) stages, including data collection, preprocessing, transformation, model development, and evaluation. The results showed that the majority of reviews were positive (58.8%), followed by negative (24.5%), and neutral (16.7%). These findings are expected to help developers understand user perceptions and improve the quality of app services. Keywords: Sentiment Analysis, Google Play Store, Naive Bayes Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengguna terhadap aplikasi Bank Saqu di Google Play Store secara otomatis. Permasalahan utama adalah banyaknya jumlah ulasan yang sulit dianalisis secara manual sehingga membutuhkan metode yang efisien. Dalam penelitian ini digunakan teknik web scraping untuk pengumpulan data dan algoritma Multinomial Naive Bayes untuk mengklasifikasikan sentimen ulasan menjadi positif, negatif, dan netral. Proses penelitian melalui tahapan Knowledge Discovery in Database (KDD) meliputi pengumpulan data, preprocessing, transformasi, pembangunan model, dan evaluasi. Hasil penelitian menunjukkan mayoritas ulasan termasuk sentimen positif sebesar 58,8%, diikuti negatif 24,5% dan netral 16,7%. Temuan ini diharapkan dapat membantu pengembang memahami persepsi pengguna dan meningkatkan kualitas layanan aplikasi. Kata kunci: Analisis Sentimen, Google Play Store, Naive Bayes
Actions (login required)
![]() |
View Item |