ANALISIS SENTIMEN ULASAN PENGGUNA PADA APLIKASI BANK SAQU DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES

PRATIWI, CAROLINE ANANDA (2025) ANALISIS SENTIMEN ULASAN PENGGUNA PADA APLIKASI BANK SAQU DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (325kB) | Preview
[img] Text (BAB I)
02 Bab 1.pdf
Restricted to Registered users only

Download (36kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (239kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (68kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (616kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (202kB)
[img] Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf
Restricted to Registered users only

Download (95kB)
[img] Text (LAMPIRAN)
08 Lampiran.pdf
Restricted to Registered users only

Download (505kB)

Abstract

This study aims to automatically analyze user review sentiment for the Saqu Bank app on the Google Play Store. The main challenge is the large number of reviews, which are difficult to analyze manually, requiring an efficient method. This study used web scraping techniques for data collection and the Multinomial Naive Bayes algorithm to classify review sentiment into positive, negative, and neutral. The research process involved the Knowledge Discovery in Database (KDD) stages, including data collection, preprocessing, transformation, model development, and evaluation. The results showed that the majority of reviews were positive (58.8%), followed by negative (24.5%), and neutral (16.7%). These findings are expected to help developers understand user perceptions and improve the quality of app services. Keywords: Sentiment Analysis, Google Play Store, Naive Bayes Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengguna terhadap aplikasi Bank Saqu di Google Play Store secara otomatis. Permasalahan utama adalah banyaknya jumlah ulasan yang sulit dianalisis secara manual sehingga membutuhkan metode yang efisien. Dalam penelitian ini digunakan teknik web scraping untuk pengumpulan data dan algoritma Multinomial Naive Bayes untuk mengklasifikasikan sentimen ulasan menjadi positif, negatif, dan netral. Proses penelitian melalui tahapan Knowledge Discovery in Database (KDD) meliputi pengumpulan data, preprocessing, transformasi, pembangunan model, dan evaluasi. Hasil penelitian menunjukkan mayoritas ulasan termasuk sentimen positif sebesar 58,8%, diikuti negatif 24,5% dan netral 16,7%. Temuan ini diharapkan dapat membantu pengembang memahami persepsi pengguna dan meningkatkan kualitas layanan aplikasi. Kata kunci: Analisis Sentimen, Google Play Store, Naive Bayes

Item Type: Thesis (S1)
Call Number CD: FIK/SI. 25 049
NIM/NIDN Creators: 41821110036
Uncontrolled Keywords: Analisis Sentimen, Google Play Store, Naive Bayes
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 020 Library and Information Sciences/Perpustakaan dan Ilmu Informasi > 025 Operations, Archives, Information Centers/Operasional Perpustakaan, Arsip dan Pusat Informasi, Pelayanan dan Pengelolaan Perpustakaan > 025.5 Service to Users/Layanan Kepada Pengguna Perpustakaan > 025.52 Reference and Information Services/Layanan Referensi dan Informasi > 025.523 Cooperative Information Services/Layanan Informasi
300 Social Science/Ilmu-ilmu Sosial > 330 Economics/Ilmu Ekonomi > 332 Financial Economics, Finance/Ekonomi Keuangan dan Finansial, Ekonomi Biaya dan Pembiayaan > 332.1 Banks/Bank, Perbankan
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan > 658 General Management/Manajemen Umum > 658.01-658.09 [Management of Enterprises of Specific Sizes, Scopes, Forms; Data Processing]/[Pengelolaan Usaha dengan Ukuran, Lingkup, Bentuk Tertentu; Pengolahan Data] > 658.05 Data Processing Computer Applications/Pengolahan Data Aplikasi Komputer
600 Technology/Teknologi > 650 Management, Public Relations, Business and Auxiliary Service/Manajemen, Hubungan Masyarakat, Bisnis dan Ilmu yang Berkaitan > 658 General Management/Manajemen Umum > 658.6 Quality Management/Manajemen Kualitas
Divisions: Fakultas Ilmu Komputer > Sistem Informasi
Depositing User: khalimah
Date Deposited: 07 Aug 2025 06:15
Last Modified: 07 Aug 2025 06:15
URI: http://repository.mercubuana.ac.id/id/eprint/96648

Actions (login required)

View Item View Item