PUTRA, DAFFA ABHINAYA (2025) VISUALISASI DATA SISWA BERPRESTASI MENGGUNAKAN K-MEANS CLUSTERING UNTUK PENYELEKSIAN OLIMPIADE (STUDI KASUS : SDN KAPUK 08 PETANG). S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 Cover.pdf Download (563kB) | Preview |
|
![]() |
Text (BAB I)
02 Bab 1.pdf Restricted to Registered users only Download (80kB) |
|
![]() |
Text (BAB II)
03 Bab 2.pdf Restricted to Registered users only Download (204kB) |
|
![]() |
Text (BAB III)
04 Bab 3.pdf Restricted to Registered users only Download (244kB) |
|
![]() |
Text (BAB IV)
05 Bab 4.pdf Restricted to Registered users only Download (520kB) |
|
![]() |
Text (BAB V)
06 Bab 5.pdf Restricted to Registered users only Download (53kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf Restricted to Registered users only Download (191kB) |
|
![]() |
Text (LAMPIRAN)
08 Lampiran.pdf Restricted to Registered users only Download (273kB) |
Abstract
The process of identifying high-achieving students at SDN Kapuk 08 Petang is still conducted manually and is not yet supported by a data-driven system, resulting in challenges related to objectivity and efficiency in selecting participants for academic competitions. This study aims to develop a dashboard-based data visualization system that can cluster students based on academic performance using the K-Means Clustering algorithm. The system was developed using the Waterfall model, with student academic scores analyzed and grouped into three clusters: low, medium, and high. Data visualization was created using Google Looker Studio and Google Sheets to produce an interactive dashboard. The results show that the system helps the school evaluate students’ academic achievements, select potential candidates for Olympiads more objectively and effectively, and support data-driven decision-making. The system can also be implemented sustainably to monitor students' academic progress over time. Keywords: Data Visualization, K-Means Clustering, Google Looker Studio Proses identifikasi siswa berprestasi di SDN Kapuk 08 Petang masih dilakukan secara manual dan belum didukung oleh sistem berbasis data, sehingga menimbulkan kendala dalam objektivitas dan efisiensi seleksi peserta Olimpiade. Penelitian ini bertujuan untuk mengembangkan sistem visualisasi data berbasis dashboard yang mampu mengelompokkan siswa berdasarkan kinerja akademik menggunakan algoritma K-Means Clustering. Pengembangan sistem dilakukan dengan model Waterfall, menggunakan data nilai siswa yang dianalisis menjadi tiga cluster: rendah, sedang, dan tinggi. Visualisasi data dibuat menggunakan Google Looker Studio dan Google Sheets untuk menghasilkan dashboard interaktif. Hasil penelitian menunjukkan bahwa sistem ini dapat mempermudah sekolah dalam mengevaluasi capaian akademik siswa, melakukan seleksi calon peserta Olimpiade secara lebih objektif dan terarah, serta mendukung pengambilan keputusan berbasis data. Sistem ini juga dapat diimplementasikan secara berkelanjutan untuk memantau perkembangan akademik siswa. Kata Kunci: Visualisasi Data, K-Means Clustering, Google Looker Studio
Actions (login required)
![]() |
View Item |