FAIZAL, RULLY HIDAYATULLAH (2025) RANCANG BANGUN APLIKASI TERINTEGRASI CHATBOT UNTUK VISUALISASI DAN PREDIKSI KUALITAS UDARA BERDASARKAN DATA INTERNET OF THINGS. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (458kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (117kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (293kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (415kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (797kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (99kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (112kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (849kB) |
Abstract
Poor air quality caused by pollution has become one of the most significant environmental issues, especially in urban areas. Although air quality data can be accessed through advanced devices, the presentation often relies on charts and visualizations that are not user-friendly for the general public. This research focuses on the development of an air quality monitoring application based on IoT and machine learning predictions, complemented by an interactive chatbot as a solution to deliver air quality information in a more inclusive manner. The chatbot technology is designed to provide explanations in a narrative form that is easy to understand by all segments of society. By utilizing IoT sensors, air quality data is collected in real-time and processed using machine learning algorithms to generate air condition predictions. The results of this study indicate that the implementation of interactive data visualization, integration of machine learning prediction models, and a responsive chatbot within the application can significantly improve public accessibility and understanding of air quality information, thereby supporting preventive actions against health risks caused by air pollution. Kata kunci: air quality, chatbot, accessibility, inclusivity Kualitas udara yang buruk akibat polusi telah menjadi salah satu masalah lingkungan yang signifikan, terutama di daerah perkotaan. Meski data kualitas udara dapat diakses melalui perangkat canggih, penyajiannya sering kali menggunakan grafik dan visualisasi yang kurang ramah bagi masyarakat awam. Penelitian ini rancang bangun aplikasi pemantauan kualitas udara berbasis IoT dan hasil prediksi machine learning yang dilengkapi dengan chatbot interaktif sebagai solusi untuk menyampaikan informasi kualitas udara secara lebih inklusivitas. Teknologi chatbot dirancang untuk memberikan penjelasan dalam bentuk narasi yang mudah dipahami oleh semua lapisan masyarakat. Dengan memanfaatkan sensor IoT, data kualitas udara dikumpulkan secara real-time dan diolah menggunakan algoritma machine learning untuk menghasilkan prediksi kondisi udara. Hasil penelitian menunjukkan bahwa implementasi visualisasi data interaktif, integrasi model prediksi machine learning, dan chatbot yang responsif dalam aplikasi ini dapat secara signifikan meningkatkan aksesibilitas serta pemahaman masyarakat terhadap informasi kualitas udara, sehingga mendukung tindakan preventif terhadap risiko kesehatan akibat polusi udara. Kata kunci: kualitas udara,chatbot, aksesibilitas, inklusivitas
Actions (login required)
![]() |
View Item |