RANCANG BANGUN ALAT PENDETEKSI UANG PALSU BERBASIS WARNA RED, GREEN, BLUE (RGB)

PUTRA, ARIS FAJAR YUNIA (2025) RANCANG BANGUN ALAT PENDETEKSI UANG PALSU BERBASIS WARNA RED, GREEN, BLUE (RGB). S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (638kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (102kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (312kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (445kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (439kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (178kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (139kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (72kB)

Abstract

This study aims to develop a counterfeit currency detection system based on the Arduino microcontroller by applying fuzzy logic. The system is designed to facilitate and accelerate the counterfeit detection process, which, when done manually, often requires specialized expertise and is not always accurate. By using an automated system, it is expected that counterfeit detection can be performed more efficiently and accurately, thus helping to reduce the circulation of counterfeit money in society. The developed system utilizes the TCS3200 sensor to detect color and a UV sensor to detect ultraviolet characteristics of the currency. The data obtained from both sensors are processed using fuzzy logic to determine the authenticity of the currency. Fuzzy logic is used to process the data due to its ability to handle uncertainty and variation in sensor data. The results of the tests show that the designed system has a detection accuracy of 90.4%. The system is able to detect the Rp 50,000.00 denomination with the fastest reading speed, while the Rp 5,000.00 denomination has the longest reading time. Detection errors occurred for the Rp 20,000.00 and Rp 2,000.00 denominations, caused by the similarity in color between these two denominations. Out of 21 trials, there were 2 misreadings. Key word: fizzy logic, money detector, TCS3200 sensor, UV sensor Penelitian ini bertujuan untuk mengembangkan sistem deteksi uang palsu berbasis mikrokontroler Arduino dengan menerapkan logika fuzzy. Sistem ini dirancang untuk memudahkan dan mempercepat proses deteksi uang palsu yang secara manual sering kali membutuhkan keahlian khusus dan tidak selalu akurat. Dengan menggunakan sistem otomatis, diharapkan deteksi uang palsu dapat dilakukan secara lebih efisien dan tepat, sehingga membantu mengurangi risiko peredaran uang palsu di masyarakat. Sistem yang dikembangkan memanfaatkan sensor TCS3200 untuk mendeteksi warna dan sensor UV untuk mendeteksi karakteristik ultraviolet pada uang. Data yang diperoleh dari kedua sensor tersebut diproses menggunakan logika fuzzy untuk menentukan keaslian uang. Logika fuzzy digunakan untuk mengolah data karena kemampuannya dalam menangani ketidakpastian dan variasi data sensor. Hasil uji coba menunjukkan bahwa sistem yang dirancang memiliki akurasi deteksi sebesar 90,4%. Sistem mampu mendeteksi nominal Rp 50.000,00 dengan kecepatan pembacaan tercepat, sementara nominal Rp 5.000,00 memiliki waktu pembacaan terlama. Kesalahan deteksi terjadi pada nominal Rp 20.000,00 dan Rp 2.000,00, disebabkan oleh kemiripan warna antara kedua nominal tersebut. Dari 21 kali percobaan, terjadi 2 kali kesalahan pembacaan. Kata Kunci: logika fuzzy, Arduino, deteksi uang palsu, sensor TCS3200, sensor UV

Item Type: Thesis (S1)
Call Number CD: FT/ELK. 25 032
NIM/NIDN Creators: 41417120059
Uncontrolled Keywords: logika fuzzy, Arduino, deteksi uang palsu, sensor TCS3200, sensor UV
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.33 Knowledge-Based Systems/Sistem Berbasis Pengetahuan > 006.336 Programming For Knowledge-Based Systems/Pemrograman Untuk Sistem Berbasis Pengetahuan
300 Social Science/Ilmu-ilmu Sosial > 330 Economics/Ilmu Ekonomi > 332 Financial Economics, Finance/Ekonomi Keuangan dan Finansial, Ekonomi Biaya dan Pembiayaan > 332.9 Counterfeiting, Forgery, Alteration/Pemalsuan Uang
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: khalimah
Date Deposited: 13 Feb 2025 05:34
Last Modified: 13 Feb 2025 05:34
URI: http://repository.mercubuana.ac.id/id/eprint/94186

Actions (login required)

View Item View Item