MARZUKI, ARENGA PINNATA (2025) KOMPARASI ALGORITMA DECISION TREE DAN KNN DENGAN OPTIMASI FEATURE SELECTION MENGGUNAKAN GENETIC ALGORITHM DALAM MEMPREDIKSI RISIKO HIPERTENSI. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (439kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (224kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (633kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (240kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (1MB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (177kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (218kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (651kB) |
Abstract
Hypertension is a condition characterized by elevated blood pressure levels, with systolic pressure ≥ 140 mmHg and diastolic pressure ≥ 90 mmHg. According to the World Health Organization (WHO) in 2023, approximately 1.28 billion adults aged 30-79 worldwide suffer from hypertension, primarily in developing countries, with 46% of them unaware of their condition. This study aims to predict hypertension risk using KNN and Decision Tree algorithms, optimized through feature selection with Genetic Algorithm. The dataset used consists of 12 features and 4,240 records. The results show that the Decision Tree algorithm achieved the best performance with an accuracy of 90.6%, precision of 92.3%, recall of 89.2%, and F1-Score of 90.8%. Feature optimization successfully improved the accuracy of both algorithms, demonstrating the effectiveness of Genetic Algorithm in feature selection for hypertension risk prediction. Keywords: Genetic Algorithm, Decision Tree, K-Nearest Neighbours, Optimization, Hypertension, Classification. Hipertensi adalah kondisi peningkatan tekanan darah di atas batas normal, dengan tekanan sistolik ≥ 140 mmHg dan diastolik ≥ 90 mmHg. Menurut data World Health Organization (WHO) tahun 2023, sekitar 1,28 miliar orang dewasa berusia 30-79 tahun di dunia mengidap hipertensi, terutama di negara berkembang, dengan 46% penderita tidak menyadari kondisinya. Penelitian ini bertujuan memprediksi risiko hipertensi menggunakan algoritma KNN dan Decision Tree dengan optimasi feature selection menggunakan Genetic Algorithm. Dataset yang digunakan terdiri dari 12 fitur dan 4240 data. Hasil penelitian menunjukkan bahwa Decision Tree memberikan performa terbaik dengan akurasi 90.6%, precision 92.3%, recall 89.2%, dan F1-Score 90.8%. Optimasi fitur berhasil meningkatkan akurasi kedua algoritma, membuktikan efektivitas Genetic Algorithm dalam seleksi fitur untuk prediksi risiko hipertensi. Kata Kunci: Genetic Algorithm, Decision Tree, K-Nearest Neighbors, Hipertensi, Optimasi, Klasifikasi.
Actions (login required)
![]() |
View Item |