PENERAPAN ALGORITMA CONTENT BASED FILTERING DAN KNEAREST NEIGHBORS UNTUK SISTEM REKOMENDASI KONTEN TIKTOK FAKULTAS ILMU KOMPUTER UNIVERSITAS MERCU BUANA

ANANDA, DEA (2025) PENERAPAN ALGORITMA CONTENT BASED FILTERING DAN KNEAREST NEIGHBORS UNTUK SISTEM REKOMENDASI KONTEN TIKTOK FAKULTAS ILMU KOMPUTER UNIVERSITAS MERCU BUANA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (1MB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (73kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (187kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (153kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (702kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (30kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (127kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (815kB)

Abstract

The use of social media, especially TikTok, continues to increase in Indonesia, with high popularity among the younger generation. The Faculty of Computer Science, Mercu Buana University utilizes this platform as an effort to increase engagement through educational and promotional content. However, in intense competition, an effective strategy is needed to ensure content can reach a wider audience. This research aims to develop a TikTok content recommendation system that can increase engagement by utilizing the Content-Based Filtering and K-Nearest Neighbors (KNN) algorithms. The Content-Based Filtering algorithm is used to analyze content characteristics, such as keywords, categories and video duration, to provide recommendations for similar content based on user preferences. Meanwhile, the KNearest Neighbors (KNN) algorithm is applied to identify content similarities based on distance or similarity of features to other popular content. It is hoped that the results of this research will provide more accurate content recommendations, thereby increasing the chances of the Faculty of Computer Science's content being recommended by the TikTok algorithm. With this recommendation system, the Faculty of Computer Science, Mercu Buana University can achieve better engagement on the TikTok platform. Keywords: TikTok, Recommendation System, Content-Based Filtering, K-Nearest Neighbors, Engagement, Preprocessing Penggunaan media sosial, terutama TikTok, terus meningkat di Indonesia, dengan popularitas yang tinggi di kalangan generasi muda. Fakultas Ilmu Komputer Universitas Mercu Buana memanfaatkan platform ini sebagai upaya untuk meningkatkan engagement melalui konten edukatif dan promosi. Namun, dalam persaingan yang ketat, diperlukan strategi yang efektif untuk memastikan konten dapat menjangkau audiens yang lebih luas. Penelitian ini bertujuan untuk mengembangkan sistem rekomendasi konten TikTok yang dapat meningkatkan engagement dengan memanfaatkan algoritma Content-Based Filtering dan K-Nearest Neighbors (KNN).Algoritma Content-Based Filtering digunakan untuk menganalisis karakteristik konten, seperti kata kunci, kategori, dan durasi video, guna memberikan rekomendasi konten serupa berdasarkan preferensi pengguna. Sedangkan algoritma K-Nearest Neighbors (KNN) diterapkan untuk mengidentifikasi kemiripan konten berdasarkan jarak atau kesamaan fitur dengan konten populer lainnya. Hasil penelitian ini diharapkan dapat memberikan rekomendasi konten yang lebih akurat, sehingga meningkatkan peluang konten Fakultas Ilmu Komputer untuk direkomendasikan oleh algoritma TikTok. Dengan sistem rekomendasi ini, Fakultas Ilmu Komputer Universitas Mercu Buana dapat mencapai engagement yang lebih baik di platform TikTok. Kata kunci: TikTok, Sistem Rekomendasi, Content-Based Filtering, K-Nearest Neighbors, Engagement, Preprocessing

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 037
NIM/NIDN Creators: 41521010145
Uncontrolled Keywords: TikTok, Sistem Rekomendasi, Content-Based Filtering, K-Nearest Neighbors, Engagement, Preprocessing
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.7 Multimedia Systems/Sistem-sistem Multimedia > 006.75 Social Multimedia/Multimedia Social > 006.754 Online Social Network/Situs Jejaring Sosial, Sosial Media
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 12 Feb 2025 03:23
Last Modified: 12 Feb 2025 03:23
URI: http://repository.mercubuana.ac.id/id/eprint/94130

Actions (login required)

View Item View Item