PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS UNTUK PENGELOMPOKAN DATA PENJUALAN

FALAKHI, ALFIN (2025) PERBANDINGAN ALGORITMA K-MEANS DAN K-MEDOIDS UNTUK PENGELOMPOKAN DATA PENJUALAN. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (365kB) | Preview
[img] Text (BAB I)
02 Bab 1.pdf
Restricted to Registered users only

Download (126kB)
[img] Text (BAB II)
03 Bab 2.pdf
Restricted to Registered users only

Download (454kB)
[img] Text (BAB III)
04 Bab 3.pdf
Restricted to Registered users only

Download (74kB)
[img] Text (BAB IV)
05 Bab 4.pdf
Restricted to Registered users only

Download (501kB)
[img] Text (BAB V)
06 Bab 5.pdf
Restricted to Registered users only

Download (67kB)
[img] Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf
Restricted to Registered users only

Download (166kB)
[img] Text (LAMPIRAN)
08 Lampiran.pdf
Restricted to Registered users only

Download (680kB)

Abstract

Data mining is the process of processing information from databases that are used for various needs in the private sector. One method in data mining is Clustering, which aims to find groupings of a series of data. The K-Means clustering algorithm plays an important role in the field of data mining and is relatively simple to implement and run. However, there is a development variant of the K-Means Clustering method, namely K-Medoids. This research aims to implement and analyze which algorithm analysis is more optimal on a dataset. The data used in this research is transaction data. Next, the results of performance testing by emitting silhouette coefficient values to find the best number of clusters. Based on the results of the best clusters, data information for production and sales strategies is obtained. Keywords: Kmeans, Kmedoids, Datamining, Clustering, Transactions Data mining adalah proses pengolahan informasi dari database yang digunakan untuk berbagai kebutuhan di sektor swasta. Salah satu metode dalam data mining adalah Clustering, yang bertujuan untuk menemukan pengelompokan dari serangkaian data . Algoritma K-Means clustering memainkan peran penting dalam bidang data mining dan relatif sederhana untuk diimplementasikan dan dijalankan. Namun, terdapat pengembangan varian dari metode K-Means Clustering, yaitu KMedoids, Penelitian ini bertujuan untuk mengimplementasikan dan menganalisis perbandingan algoritma mana yang lebih optimal pada suatu dataset. Data yang digunakan dalam penelitian ini merupakan data transaksi. selanjutnya, hasil pengujian kinerja dengan mengevaluasi nilai silhouette coefficient untuk mencari jumlah cluster terbaik , Berdasarkan hasil cluster terbaik diperoleh data informasi untuk strategi produksi maupun penjualan. Kata Kunci : K Means, Kmedoids, Datamining, Clustering, Transaksi

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 032
NIM/NIDN Creators: 41519110117
Uncontrolled Keywords: K Means, Kmedoids, Datamining, Clustering, Transaksi
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
200 Religion/Agama > 290 Other Religions/Agama Selain Kristen > 297 Agama Islam/Islam > 297.4 Islamic law/Hukum Islam > 297.43 Muamalat/Muamalat > 297.435 Land Transactions/Transaksi Tanah
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 10 Feb 2025 03:52
Last Modified: 10 Feb 2025 08:38
URI: http://repository.mercubuana.ac.id/id/eprint/94045

Actions (login required)

View Item View Item