IMPLEMENTASI ALGORITMA RANDOM FOREST DALAM MEMPREDIKSI HARGA BAWANG MERAH DI DKI JAKARTA

SYAMSURI, ARIEF AHMAD (2025) IMPLEMENTASI ALGORITMA RANDOM FOREST DALAM MEMPREDIKSI HARGA BAWANG MERAH DI DKI JAKARTA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (284kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (36kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (106kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (33kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (855kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (79kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (121kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (948kB)

Abstract

This research aims to build a prediction model for shallot prices using the Random Forest algorithm based on historical data. Models are evaluated with accuracy metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). The results show that the Random Forest model is able to produce fairly accurate predictions with an R² value of 0.88, which shows the model can explain around 88% of the data variation. This research provides benefits for the government, farmers and consumers in predicting shallot prices through more accurate predictions. Keywords : Price Prediction, Random Forest, Shallots, Machine Learning Algorithm, Price Stability Penelitian ini bertujuan untuk membangun model prediksi harga bawang merah menggunakan algoritma Random Forest berdasarkan data historis. Model dievaluasi dengan metrik akurasi seperti Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan R-squared (R²). Hasilnya menunjukkan bahwa model Random Forest mampu menghasilkan prediksi yang cukup akurat dengan nilai R² sebesar 0.88, yang menunjukkan model dapat menjelaskan sekitar 88% variasi data. Penelitian ini memberikan manfaat bagi pemerintah, petani, dan konsumen dalam mengantisipasi fluktuasi harga bawang merah melalui prediksi yang lebih akurat. Kata Kunci : Prediksi Harga, Random Forest, Bawang Merah, Algoritma Machine Learning, Stabilitas Harga

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 010
NIM/NIDN Creators: 41520010170
Uncontrolled Keywords: rediksi Harga, Random Forest, Bawang Merah, Algoritma Machine Learning, Stabilitas Harga
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
300 Social Science/Ilmu-ilmu Sosial > 380 Commerce, Communications, Transportation (Perdagangan, Komunikasi, Transportasi) > 381 Commerce, Trade/Perdagangan > 381.1 Retail Trade/Perdagangan Ritail, Pasar
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 01 Feb 2025 07:51
Last Modified: 01 Feb 2025 07:51
URI: http://repository.mercubuana.ac.id/id/eprint/93819

Actions (login required)

View Item View Item