SYAMSURI, ARIEF AHMAD (2025) IMPLEMENTASI ALGORITMA RANDOM FOREST DALAM MEMPREDIKSI HARGA BAWANG MERAH DI DKI JAKARTA. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (284kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (36kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (106kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (33kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (855kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (79kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (121kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (948kB) |
Abstract
This research aims to build a prediction model for shallot prices using the Random Forest algorithm based on historical data. Models are evaluated with accuracy metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). The results show that the Random Forest model is able to produce fairly accurate predictions with an R² value of 0.88, which shows the model can explain around 88% of the data variation. This research provides benefits for the government, farmers and consumers in predicting shallot prices through more accurate predictions. Keywords : Price Prediction, Random Forest, Shallots, Machine Learning Algorithm, Price Stability Penelitian ini bertujuan untuk membangun model prediksi harga bawang merah menggunakan algoritma Random Forest berdasarkan data historis. Model dievaluasi dengan metrik akurasi seperti Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan R-squared (R²). Hasilnya menunjukkan bahwa model Random Forest mampu menghasilkan prediksi yang cukup akurat dengan nilai R² sebesar 0.88, yang menunjukkan model dapat menjelaskan sekitar 88% variasi data. Penelitian ini memberikan manfaat bagi pemerintah, petani, dan konsumen dalam mengantisipasi fluktuasi harga bawang merah melalui prediksi yang lebih akurat. Kata Kunci : Prediksi Harga, Random Forest, Bawang Merah, Algoritma Machine Learning, Stabilitas Harga
Actions (login required)
![]() |
View Item |