KLASIFIKASI WARGA PENERIMA BANTUAN SOCIAL COVID-19 MENGGUNAKAN ALGORITMA NAIVE BAYES

SAPUTRA, FIQIH (2024) KLASIFIKASI WARGA PENERIMA BANTUAN SOCIAL COVID-19 MENGGUNAKAN ALGORITMA NAIVE BAYES. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (HAL COVER)
01 COVER.pdf

Download (394kB)
[img] Text (ABSTRAK)
02 ABSTRAK.pdf

Download (30kB)
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (62kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (127kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (37kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (203kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (26kB)
[img] Text (DAFTAR PUSTAKA)
08 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (180kB)
[img] Text (LAMPIRAN)
09 LAMPIRAN.pdf
Restricted to Registered users only

Download (985kB)

Abstract

The purpose of this study was to evaluate the efficiency of the naïve Bayes algorithm as a classification method for determining individual eligibility for Covid-19 social assistance in the Sudimara Pinang sub-district. The naïve Bayes algorithm is used to categorize residents based on certain criteria such as calculation of salary, number of dependents, and number of vehicles, to determine the most appropriate form of assistance for each individual. The data used in this study were collected from the Sudimara Pinang sub-district. This research makes a significant contribution in choosing the right classification method to determine the eligibility of the Covid-19 social assistance in Sudimara Pinang District. By applying an accurate classification method, it is hoped that the performance of the Sudimara Pinang District apparatus will increase, which in turn will provide optimal benefits for the people in the Sudimara Pinang District environment. Keywords : Sosaial assistance,covid-19,sudimara pinang village,naïve bayes,classification method Tujuan dari penelitian ini adalah untuk mengevaluasi efisiensi algoritma naïve bayes sebagai metode klasifikasi untuk menentukan kelayakan individu untuk bantuan sosial Covid-19 di kecamatan Sudimara Pinang. Algoritma naïve Bayes digunakan untuk mengkategorikan warga berdasarkan kriteria tertentu seperti perhitungan gaji, jumlah tanggungan, dan jumlah kendaraan, untuk menentukan bentuk bantuan yang paling tepat untuk setiap individu. Data yang digunakan dalam penelitian ini dikumpulkan dari kecamatan Sudimara Pinang. Penelitian ini memberikan kontribusi yang signifikan dalam pemilihan metode klasifikasi yang tepat untuk menentukan kelayakan bansos Covid-19 di Kecamatan Sudimara Pinang. Dengan menerapkan metode klasifikasi yang akurat, diharapkan kinerja aparatur Kecamatan Sudimara Pinang akan meningkat, yang pada akhirnya memberikan manfaat yang optimal bagi masyarakat di lingkungan Kecamatan Sudimara Pinang. Kata kunci: bantuan social,covid-19,kelurahan sudimara pinang, naïve bayes, metode klasifikasi.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 24 026
NIM/NIDN Creators: 41519010209
Uncontrolled Keywords: bantuan social,covid-19,kelurahan sudimara pinang, naïve bayes, metode klasifikasi
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
300 Social Science/Ilmu-ilmu Sosial > 300. Social Science/Ilmu-ilmu Sosial
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
700 Arts/Seni, Seni Rupa, Kesenian > 750 Painting and Paintings/Seni Lukis dan Lukisan > 751 Techniques and Procedures/Teknik Seni Lukis dan Lukisan, Prosedur Seni Lukis dan Lukisan > 751.4 Techniques and Procedures/Teknik dan Prosedur > 751.49 Other Methods/Metode Lainnya
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 07 Feb 2024 03:00
Last Modified: 07 Feb 2024 03:00
URI: http://repository.mercubuana.ac.id/id/eprint/85914

Actions (login required)

View Item View Item