ANALISIS SENTIMEN ULASAN APLIKASI M-BANKING PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE DAN DECISION TREE

ZELINA, NUR (2023) ANALISIS SENTIMEN ULASAN APLIKASI M-BANKING PADA GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE DAN DECISION TREE. S1 thesis, Universitas Mercu Buana Jakarta.

[img] Text (HAL COVER)
01 Cover.pdf

Download (263kB)
[img] Text (ABSTRAK)
02 Abstrak.pdf

Download (31kB)
[img] Text (BAB I)
03 Bab 1.pdf
Restricted to Registered users only

Download (36kB)
[img] Text (BAB II)
04 Bab 2.pdf
Restricted to Registered users only

Download (154kB)
[img] Text (BAB III)
05 Bab 3.pdf
Restricted to Registered users only

Download (123kB)
[img] Text (BAB IV)
06 Bab 4.pdf
Restricted to Registered users only

Download (266kB)
[img] Text (BAB V)
07 Bab 5.pdf
Restricted to Registered users only

Download (73kB)
[img] Text (DAFTAR PUSTAKA)
08 Daftar Pustaka.pdf
Restricted to Registered users only

Download (96kB)
[img] Text (LAMPIRAN)
09 Lampiran.pdf
Restricted to Registered users only

Download (922kB)

Abstract

Advances in technology and information have a major influence on human life. The use of this technology has been widely used by humans, especially the use of internet technology. The internet that can be used at an affordable price and easily available supporting hardware has brought humans into a more modern era. In this study, sentiment analysis was carried out on the use of the Motion Banking application using the Support Vector Machine (SVM) algorithm and the Decision Tree algorithm. This study uses the Knowledge Discovery in Database (KDD) method. The purpose of this study is to classify review data from users of the Motion Banking application into positive and negative sentiments by studying user opinions about the Motion Banking application through the reviews provided, and to determine the performance of the classifier method used. In this study, data was obtained by collecting data from user reviews of the Motion Banking application on the Google Play Store using scraping techniques and managed to get 7000 review data. The best results are obtained in scenario 3 (70:30) using the Support Vector Machine algorithm with the Linear kernel which produces 93.7% accuracy, 93.6% precision, 91% recall, and 92.3% f1 score, while for The Decision Tree has an accuracy value of 83%, precision of 80.7%, recall of 77.6%, and f1 score of 79.1%. Keywords: Sentiment Analysis, Support Vector Machine, Decision Tree Kemajuan teknologi dan informasi membawa pengaruh besar pada kehidupan manusia. Pemanfaatan teknologi tersebut telah banyak digunakan manusia khususnya adalah pemanfaatan teknologi internet. Internet yang dapat digunakan dengan harga yang terjangkau beserta dengan perangkat keras pendukung yang mudah didapatkan telah membawa manusia ke dalam era yang lebih modern. Pada penelitian ini melakukan analisis sentimen terhadap penggunaan aplikasi Motion Banking menggunakan algoritma Support Vector Machine (SVM) dan algoritma Decision Tree. Penelitian ini menggunakan metode Knowledge Discovery in Database (KDD). Tujuan dari penelitian ini adalah untuk mengklasifikasikan data ulasan dari pengguna aplikasi Motion Banking kedalam sentimen positive dan negative dengan mempelajari pendapat pengguna tentang aplikasi Motion Banking melalui ulasan yang diberikan, dan untuk mengetahui performa dari metode pengklasifikasi yang digunakan. Pada penelitian ini data diperoleh dengan cara mengangkat data dari ulasan pengguna aplikasi Motion Banking pada Google Play Store menggunakan teknik scraping dan berhasil mendapatkan 7000 data ulasan. Hasil terbaik diperoleh pada skenario 3 (70:30) menggunakan algoritma Support Vector Machine dengan kernel Linear yang menghasilkan accuracy sebesar 93,7%, precision 93,6%, recall 91%, dan f1-score 92,3%, sedangkan untuk algoritma Decision Tree memiliki nilai accuracy 83%, precision 80,7%, recall 77,6%, dan f1-score 79,1%. Kata Kunci: Analisis Sentimen, Support Vector Machine, Decision Tree

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 23 055
NIM/NIDN Creators: 41519010059
Uncontrolled Keywords: Analisis Sentimen, Support Vector Machine, Decision Tree
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
100 Philosophy and Psychology/Filsafat dan Psikologi > 150 Psychology/Psikologi > 154 Subconscious and Altered States and Process/Psikologi Bawah Sadar > 154.6 Sleep Phenomena/Fenomena Tidur > 154.63 Dreams/Mimpi > 154.634 Analysis/Analisis
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ADELINA HASNA SETIAWATI
Date Deposited: 22 Jul 2023 06:20
Last Modified: 22 Jul 2023 06:20
URI: http://repository.mercubuana.ac.id/id/eprint/79487

Actions (login required)

View Item View Item