ANALISIS SENTIMEN BELANJA ONLINE PADA SOSIAL MEDIA TWITTER SELAMA PANDEMIC COVID-19 DENGAN MENGGUNAKAN NAIVE BAYES DAN SUPPORT VECTOR MACHINE

SITEPU, ANRIZAS (2022) ANALISIS SENTIMEN BELANJA ONLINE PADA SOSIAL MEDIA TWITTER SELAMA PANDEMIC COVID-19 DENGAN MENGGUNAKAN NAIVE BAYES DAN SUPPORT VECTOR MACHINE. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (1MB) | Preview
[img]
Preview
Text (ABSTRAK)
02 Abstrak.pdf

Download (79kB) | Preview
[img] Text (BAB I)
03 BAB 1.pdf
Restricted to Registered users only

Download (100kB)
[img] Text (BAB II)
04 BAB 2.pdf
Restricted to Registered users only

Download (90kB)
[img] Text (BAB III)
05 BAB 3.pdf
Restricted to Registered users only

Download (329kB)
[img] Text (BAB IV)
06 BAB 4.pdf
Restricted to Registered users only

Download (272kB)
[img] Text (BAB V)
07 BAB 5.pdf
Restricted to Registered users only

Download (238kB)
[img] Text (BAB VI)
08 BAB 6.pdf
Restricted to Registered users only

Download (285kB)
[img] Text (DAFTAR PUSTAKA)
09 Daftar Pustaka.pdf
Restricted to Registered users only

Download (84kB)
[img] Text (LAMPIRAN)
10 Lampiran.pdf
Restricted to Registered users only

Download (253kB)

Abstract

Abstract - Sentiment analysis is the most common text classification process used to analyze messages or data to get sentiment information and tell whether the underlying sentiment is positive, negative, neutral. Generally, today's society expresses opinions by making posts on social media with various topics, one of the social media that is often used is Twitter. The topic raised in this research is the analysis of online shopping sentiment on Twitter social media during the Covid-19 pandemic using the Naive Bayes algorithm and Support Vector Machine. In this study, the data was taken from public opinion through social media twitter by carrying out a data collection process by utilizing the Twitter API with the keyword "online shopping" then doing manual data labeling which will be classified into 3 classes. The dataset that has been labeled will later go through the preprocessing stage and then will be classified into three sentiment categories, namely positive, negative and neutral. From the test results by applying the naive Bayes classification method and support vector machine to process the sentiment contained in a sentence or tweet automatically. Which is categorized into three classes, positive, negative and neutral, with a total training data of 400 and test data of 100. The accuracy is obtained by 72% for the naive Bayes algorithm and 76% for the support vector machine algorithm Key words: research, guidance, computer science, universitas mercu buana Abstrak - Analisis sentimen merupakan proses klasifikasi teks paling umum yang digunakan menganalisis pesan atau data untuk mendapatkan informasi sentimen dan memberi tahu apakah sentimen yang mendasarinya positif, negatif, netral. Umumnya masyarakat zaman sekarang menuangkan opini dengan membuat sebuah postingan di media social dengan berbagai macam topik, salah satu media sosial yang sering digunakan adalah twitter.Topik yang diangkat pada penelitian ini adalah Analisis sentimen belanja online pada social media twitter selama pandemi covid-19 menggunakan algoritma naive bayes dan Support Vector Machine. Pada penelitian ini data diambil dari opini masyarakat melalui sosial media twitter dengan melakukan proses pengumpulan data dengan memanfaatkan Twitter API dengan kata kunci “belanja online” kemudian melakukan pelabelan data manual yang akan diklasifikasikan menjadi 3 kelas. Dataset yang sudah dilabeli nantinya akan melewati tahapan preprocessing dan kemudian akan diklasifikasikan menjadi tiga kategori sentimen yaitu positif, negatif serta netral. Dari hasil pengujian dengan menerapkan metode klasifikasi naïve bayes dan support vector machine untuk mengolah sentimen yang terdapat dalam suatu kalimat atau tweet secara otomatis yang dikategorikan dalam tiga kelas yaitu positif, negatif dan netral dengan jumlah data latih sebesar 400 dan data uji sebesar 100, didapatkan akurasi sebesar 72% untuk algoritma naïve bayes dan 76% untuk algoritma support vector machine. Kata kunci: Naïve Bayes, Support Vector Machine,Analisis Sentimen , twitter,klasifikasi.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 22 019
Call Number: SIK/15/22/051
NIM/NIDN Creators: 41519120034
Uncontrolled Keywords: Naïve Bayes, Support Vector Machine,Analisis Sentimen , twitter,klasifikasi.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 070 Documentary Media, Educational Media, News Media, Journalism, Publishing/Media Dokumenter, Media Pendidikan, Media Berita, Jurnalisme, Penerbitan > 070.1-070.9 Standard Subdivisions of Documentary Media, Educational Media, News Media, Journalism, Publishing/Subdivisi Standar Dari Media Dokumenter, Media Pendidikan, Media Berita, Jurnalisme, Penerbitan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: WADINDA ROSADI
Date Deposited: 19 Oct 2022 08:16
Last Modified: 19 Oct 2022 08:16
URI: http://repository.mercubuana.ac.id/id/eprint/70618

Actions (login required)

View Item View Item