Purnama Jaya, Adee (2019) ANALISIS SEGMENTASI AGEN PENJUALAN MENNGUNAKAN MODEL RFM DAN ALGORITMA K-MEANS (Studi Kasus : PT. Kereta Api Indonesia). S1 thesis, Universitas Mercu Buana Bekasi.
|
Text
1 Cover 1.pdf Download (40kB) | Preview |
|
|
Text
2 Cover 2.pdf Download (40kB) | Preview |
|
|
Text
3 Lembar Pernyataan Orisinalitas.pdf Download (301kB) | Preview |
|
|
Text
4 Surat Pernyataan Persetujuan Publikasi Tugas Akhir.pdf Download (334kB) | Preview |
|
|
Text
5 Surat Penrnyataan Luaran Tugas Akhir.pdf Download (344kB) | Preview |
|
|
Text
6 Lembar Persetujuan Penguji.pdf Download (331kB) | Preview |
|
|
Text
7 Lembar Pengesahan.pdf Download (316kB) | Preview |
|
|
Text
8 Abstrak.pdf Download (68kB) | Preview |
|
|
Text
9 Abstract.pdf Download (27kB) | Preview |
|
|
Text
10 Kata Pengantar.pdf Download (70kB) | Preview |
|
|
Text
11 Daftar Isi.pdf Download (166kB) | Preview |
|
|
Text
12 Daftar Gambar.pdf Download (200kB) | Preview |
|
|
Text
13 Daftar Tabel.pdf Download (166kB) | Preview |
|
|
Text
14 Naskah Jurnal.pdf Download (430kB) | Preview |
|
|
Text
15 Kertas Kerja.pdf Download (26kB) | Preview |
|
Text
16 Bagian 1 Literatur Review.pdf Restricted to Registered users only Download (31kB) |
||
Text
17 Bagian 2 Data Set.pdf Restricted to Registered users only Download (121kB) |
||
Text
18 Bagian 3 Tahapan Eksperimen.pdf Restricted to Registered users only Download (204kB) |
||
Text
19 Bagian 4 Hasil Semua Eksperimen.pdf Restricted to Registered users only Download (372kB) |
||
Text
20 Bagian 5 Kesimpulan.pdf Restricted to Registered users only Download (65kB) |
||
Text
21 Daftar Pustaka.pdf Restricted to Registered users only Download (78kB) |
||
Text
22 Lampiran.pdf Restricted to Registered users only Download (413kB) |
Abstract
Abstrak Agen penjualan memberikan kontribusi yang cukup besar dalam pemasaran. Setiap agen yang berbeda memiliki nilai yang berbeda pula. Pengetahuan tentang karakteristik setiap agen yang diperlukan untuk mendukung keputusan yang diperlukan strategi bisnis perusahaan juga mengatur hubungan yang baik antara perusahaan dan agennya. Segmentasi agen penjualan dapat Segasi agen penjualan, perusahaan diharapkan dapat meminta kebijakan yang tepat. Informasi tentang segmentasi agen penjualan dapat diperoleh dengan menggunakan teknik Penambangan Data dan metode RFM (Kekinian, Frekuensi, Moneter). Teknik Data Mining K-means Clustering digunakan untuk segmentasi agen penjualan. RFM adalah model yang digunakan untuk membedakan agen berdasarkan 3 variabel, yaitu kebaruan, frekuensi, dan moneter. Dari hasil penerapan model kmeans dan agen RFM penjualan dibagi menjadi 3 segmen dengan karakteristik yang berbeda. Segmen ketiga tersebut yaitu 54,17% agen baru atau agen yang jarang terjadi transaksi dan tidak lama terjadi transaksi lagi, 35,42% agen penjualan terbaik dan merupakan agen yang ”bernilai” untuk perusahaan, serta 10,42% agen penjualan yang semakin meningkat. Kata kunci: Data Mining, k-means, Clustering, RFM. Abstract Sales agents make a significant contribution in marketing. Each different agent has different values. Knowledge of the characteristics of each agent needed to support the decisions needed by the company's business strategy also regulates good relations between the company and its agents. Sales agent segmentation can be Segasi sales agents, companies are expected to be able to request the right policies. Information about sales agent segmentation can be obtained using Data Mining techniques and RFM methods (Current, Frequency, Monetary). The Kmeans Clustering Data Mining technique is used for sales agent segmentation. RFM is a model used to differentiate agents based on 3 variables, namely novelty, frequency, and monetary. The results of the application of the k-means model and the RFM sales agent are divided into 3 segments with different characteristics. The third segment is 54.17% of new agents or agents that rarely occur and there is no longer a long transaction, 35.42% of the best sales agents and agents who are "valued" for the company, and 10.42% sales agents are increasing. Keywords: Data Mining, k-means, Clustering, RFM.
Item Type: | Thesis (S1) |
---|---|
Call Number CD: | FIKOM/INF 19 001 |
NIM/NIDN Creators: | 41513110088 |
Uncontrolled Keywords: | Kata kunci: Data Mining, k-means, Clustering, RFM. |
Subjects: | 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | siti maisyaroh |
Date Deposited: | 15 Jul 2022 01:53 |
Last Modified: | 15 Jul 2022 02:00 |
URI: | http://repository.mercubuana.ac.id/id/eprint/65249 |
Actions (login required)
View Item |