SIMANGUNSONG, GIDEON PANAHATAN (2025) PERANCANGAN DAN IMPLEMENTASI SISTEM DETEKSI DINI KEBAKARAN BERBASIS IoT DENGAN METODE FUZZY MAMDANI PADA PANEL LISTRIK. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (362kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (110kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (345kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (589kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (509kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (28kB) |
|
![]() |
Text (DAFTRA PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (100kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (579kB) |
Abstract
Fires in electrical panels are a serious risk that can threaten the safety and continuity of industrial operations. The manufacturing industry requires an effective and responsive fire protection system for panels electricity. This research aims to design, build and analyze a Design and Implementation of an IoT-Based Early Warning Fire Detection System Using the Mamdani Fuzzy Method on an Electrical Panel for quick handling of fire incidents. The prototype design process includes requirements analysis, architectural design analysis, and system development analysis. The main system components consist of an ESP32 microcontroller, DHT22 temperature and MQ2 smoke sensors, an automatic suppression system, and a WiFi module for IoT connectivity. The Fuzzy Mamdani control method is implemented to broadcast the fire risk level based on input from various sensors, enabling early detection and more accurate response. The system is integrated with the ThingSpeak platform for real-time monitoring, data visualization and emergency notifications and sent to telegram. The test results show that the prototype system is able to work well and quickly. The prototype system is able to detect temperature with an error percentage of 0.3%, detect humidity with an error percentage of 0.8% and detect gas (smoke) concentration with an error percentage of 0.3%. The results can be said to be appropriate and in line with the rulebase of this research. Keywords: Prototype System, Fire protection, Internet of Things (IoT), Fuzzy Mamdani, ESP32, DHT22, MQ2, ThingSpeak Kebakaran pada panel listrik merupakan risiko serius yang dapat mengancam keselamatan dan kelangsungan operasional industri. Industri manufaktur membutuhkan sistem proteksi kebakaran yang efektif dan responsif untuk panel listrik. Penelitian ini bertujuan merancang, membangun, dan menganalisis Perancangan Dan Implementasi Sistem Deteksi Dini Kebakaran Berbasis IoT Dengan Metode Fuzzy Mamdani Pada Panel Listrik dalam penanganan cepat insiden kebakaran. Proses rancang prototype meliputi analisis kebutuhan, analisis perancangan arsitektur, dan analisis pengembangan sistem. Komponen utama sistem terdiri dari mikrokontroler ESP32, sensor suhu DHT22 dan asap MQ2, sistem suppression otomatis, serta modul WiFi untuk konektivitas IoT. Metode kendali Fuzzy Mamdani diimplementasikan untuk mengevaluasi tingkat risiko kebakaran berdasarkan input dari berbagai sensor, memungkinkan deteksi dini dan respons yang lebih akurat. Sistem ini terintegrasi dengan platform ThingSpeak untuk pemantauan real-time, visualisasi data, dan notifikasi darurat dan dikirim ke telegram. Hasil pengujian menunjukkan bahwa sistem prototype mampu bekerja dengan baik dan cepat. System prototype mampu mendeteksi suhu dengan persentase error sebesar 0,3%, mendeteksi kelembapan dengan persetase error 0,8% dan mendeteksi konsentrasi gas (asap) dengan persentase error sebesar 0,3%. Hasil dapat dikatakan sesuai dan sejalan dengan rulebase penelitian ini. Kata kunci: Sistem Prototype, Proteksi kebakaran, Internet ofThings (IoT), Fuzzy Mamdani, ESP32, DHT22, MQ2, ThingSpeak
Actions (login required)
![]() |
View Item |