RANCANG BANGUN DAN ANALISIS KINERJA ROBOT LENGAN MENGGUNAKAN INVERSE KINEMATICS DAN PID TUNING

NAYATTAMA, ANDYKA (2025) RANCANG BANGUN DAN ANALISIS KINERJA ROBOT LENGAN MENGGUNAKAN INVERSE KINEMATICS DAN PID TUNING. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (412kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (93kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (218kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (380kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (384kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (206kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (144kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (416kB)

Abstract

This research focuses on the design and development of a 3-degree-offreedom (DOF) automatic robotic arm system equipped with a gripper, capable of independently sorting objects based on character recognition results. The system is designed to integrate the Inverse Kinematics (IK) method and Proportional– Integral–Derivative (PID) control to precisely regulate servo movements, and is combined with Optical Character Recognition (OCR) to enable the robot to automatically determine the sorting location. The main hardware components include a Raspberry Pi as the OCR processing unit, an Arduino Uno as the actuator controller, a webcam for image acquisition, and three servo motors to drive the robotic arm and gripper. The research methodology includes system design with a Raspberry Pi serving as the OCR processor and an Arduino Uno controlling the servos using IK and PID. A camera captures images of the objects, which are then processed by the OCR system to recognize their characters. The recognition results are transmitted to the Arduino, where servo joint angles are computed using IK, while PID ensures stable and accurate servo movements. The system was tested for IK accuracy, PID tuning, Error Steady State (ESS), motion consistency, and OCR–robot integration. Experimental results demonstrate that the IK method can compute servo joint angles with a deviation of 0° at all tested points, while the ESS averaged between 0° and 0.16°, and the motion consistency was highly reliable. PID parameters with Kp values of 50–70 and Kd values of 0.5–1.2 provided the best compromise between response speed and motion stability, with overshoot 0% until <1%. OCR integration achieved a 100% success rate on clearly printed labels but dropped significantly to 0% for low-quality labels, indicating that the overall system performance is highly dependent on OCR accuracy. This study confirms that the integration of IK, PID, and OCR can realize a 3-DOF automatic robotic arm system that is precise, stable, and adaptive, although improvements in OCR accuracy and PID parameter optimization are still required for more reliable performance under varied real-world conditions. Keywords: Robotic Arm, Inverse Kinematics, PID, OCR, Automatic Sorting Penelitian ini berfokus pada perancangan dan pembuatan sebuah sistem robot lengan otomatis 3 derajat kebebasan (DOF) dengan gripper yang mampu melakukan penyortiran objek secara mandiri berdasarkan hasil pengenalan karakter. Sistem ini dirancang untuk menggabungkan metode Inverse Kinematics (IK) dan kendali Proportional–Integral–Derivative (PID) guna mengatur pergerakan servo secara presisi, serta diintegrasikan dengan Optical Character Recognition (OCR) agar robot dapat menentukan lokasi penyortiran secara otomatis. Perangkat keras utama yang digunakan meliputi Raspberry Pi sebagai unit pengolah OCR, Arduino Uno sebagai pengendali aktuator, kamera webcam untuk akuisisi citra, dan tiga motor servo sebagai penggerak lengan robot beserta gripper. Metode penelitian meliputi perancangan sistem dengan Raspberry Pi sebagai pengolah OCR dan Arduino Uno sebagai pengendali servo berbasis IK dan PID. Kamera digunakan untuk menangkap citra objek, kemudian OCR mengenali karakter pada objek tersebut. Hasil pengenalan dikirim ke Arduino untuk dihitung sudut gerakannya menggunakan IK, sedangkan PID mengatur pergerakan servo agar stabil dan akurat. Pengujian dilakukan terhadap akurasi IK, penyetelan PID, error steady state (ESS), konsistensi, dan integrasi OCR–robot lengan. Hasil pengujian menunjukkan bahwa metode IK mampu menghasilkan perhitungan sudut servo dengan deviasi 0° pada seluruh titik uji, Error Steady State (ESS) rata-rata berkisar antara 0°–0,16°, serta tingkat konsistensi gerak yang sangat tinggi. Parameter PID dengan nilai Kp = 50–70 dan Kd = 0,5–1,2 terbukti memberikan kompromi terbaik antara kecepatan respon dan kestabilan gerak, dengan overshoot yang 0% hingga <1%. Integrasi OCR menghasilkan tingkat keberhasilan 100% pada label dengan kualitas cetak jelas, namun menurun signifikan hingga 0% pada label dengan kualitas rendah, menunjukkan bahwa kinerja keseluruhan sistem sangat dipengaruhi oleh akurasi OCR. Penelitian ini membuktikan bahwa integrasi IK, PID, dan OCR mampu mewujudkan sistem robot lengan otomatis 3 DOF yang presisi, stabil, dan adaptif, meskipun peningkatan akurasi OCR dan optimasi parameter PID masih diperlukan untuk performa yang lebih andal pada kondisi lapangan yang bervariasi. Kata kunci: Robot Lengan, Inverse Kinematics, PID, OCR, Penyortiran Otomatis

Item Type: Thesis (S1)
Call Number CD: FT/ELK. 25 091
NIM/NIDN Creators: 41421010022
Uncontrolled Keywords: Robot Lengan, Inverse Kinematics, PID, OCR, Penyortiran Otomatis
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: khalimah
Date Deposited: 17 Sep 2025 08:49
Last Modified: 17 Sep 2025 08:49
URI: http://repository.mercubuana.ac.id/id/eprint/98027

Actions (login required)

View Item View Item