OPTIMASI CHATBOT AI MENGGUNAKAN FRAMEWORK OLLAMA

FEBRIAN, WAHYU (2025) OPTIMASI CHATBOT AI MENGGUNAKAN FRAMEWORK OLLAMA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (457kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (37kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (237kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (66kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (272kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (33kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (166kB)
[img]
Preview
Text (LAMPIRAN)
08 LAMPIRAN.pdf

Download (823kB) | Preview

Abstract

In the digital era, automated data processing based on AI chatbots has become a crucial component in various industries. This research aims to develop a chatbot capable of accepting CSV files as input and producing data in CSV format as output. The chatbot was developed using the Python programming language and the Ollama platform, which integrates large language models (LLMs). The method used involves a natural language processing (NLP) algorithm based on a transformer architecture. Data preprocessing is applied to recognize patterns in CSV files and map them to a structure understandable by the chatbot. Entity recognition and intent classification techniques are used to understand the context of user requests, while chunking and vectorization are used to optimize the information extraction process. Keywords: LLM, Chatbot, Ollama, Python. Dalam era digital, otomatisasi pemrosesan data berbasis chatbot AI menjadi komponen penting di berbagai industri. Penelitian ini bertujuan mengembangkan chatbot yang mampu menerima file CSV sebagai masukan dan menghasilkan data dalam format CSV sebagai keluaran. Chatbot dikembangkan menggunakan bahasa pemrograman Python dan platform Ollama yang mengintegrasikan model bahasa besar (LLM). Metode yang digunakan melibatkan algoritma pemrosesan bahasa alami (Natural Language Processing/NLP) berbasis arsitektur transformer. Proses prapemrosesan data diterapkan untuk mengenali pola dalam file CSV dan memetakannya ke struktur yang dapat dipahami chatbot. Teknik entity recognition dan intent classification digunakan untuk memahami konteks permintaan pengguna, sedangkan chunking dan vectorization digunakan untuk mengoptimalkan proses ekstraksi informasi. Kata Kunci: LLM, Chatbot, Ollama, Python.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 173
NIM/NIDN Creators: 41521010022
Uncontrolled Keywords: LLM, Chatbot, Ollama, Python.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 005 Computer Programmming, Programs, Data/Pemprograman Komputer, Program, Data > 005.1 Programming/Pemrograman > 005.13 Language Programming/Bahasa Pemrograman
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 16 Sep 2025 02:13
Last Modified: 16 Sep 2025 02:13
URI: http://repository.mercubuana.ac.id/id/eprint/97910

Actions (login required)

View Item View Item