Sulaksono, Andrea Sigit (2025) ANALISA PENGARUH CONDITION-BASED MAINTENANCE (CBM) TERHADAP KINERJA ALAT BERAT DENGAN MODERASI KONDISI LINGKUNGAN OPERASIONAL DAN KOMPETENSI SUMBER DAYA MANUSIA PADA INDUSTRI PERTAMBANGAN BATUBARA DI INDONESIA. S2 thesis, Universitas Mercu Buana Jakarta - Menteng.
![]() |
Text (Cover)
55323120002-Andrea Sigit Sulaksono-01 Cover.pdf Download (640kB) |
![]() |
Text (BAB I)
55323120002-Andrea Sigit Sulaksono-02 Bab 1 - Andrea Sigit.pdf Restricted to Registered users only Download (302kB) |
![]() |
Text (BAB II)
55323120002-Andrea Sigit Sulaksono-03 Bab 2 - Andrea Sigit.pdf Restricted to Registered users only Download (757kB) |
![]() |
Text (BAB III)
55323120002-Andrea Sigit Sulaksono-04 Bab 3 - Andrea Sigit.pdf Restricted to Registered users only Download (299kB) |
![]() |
Text (BAB IV)
55323120002-Andrea Sigit Sulaksono-05 Bab 4 - Andrea Sigit.pdf Restricted to Registered users only Download (1MB) |
![]() |
Text (BAB V)
55323120002-Andrea Sigit Sulaksono-06 Bab 5 - Andrea Sigit.pdf Restricted to Registered users only Download (51kB) |
![]() |
Text (Daftar Pustaka)
55323120002-Andrea Sigit Sulaksono-08 Daftar Pustaka - Andrea Sigit.pdf Restricted to Registered users only Download (72kB) |
![]() |
Text (Lampiran)
55323120002-Andrea Sigit Sulaksono-09 Lampiran - Andrea Sigit.pdf Restricted to Registered users only Download (5MB) |
Abstract
Penelitian ini bertujuan untuk menganalisis pengaruh penerapan Condition-Based Maintenance (CBM) terhadap kinerja alat berat pada industri pertambangan batubara, serta menilai peran moderasi dari kondisi lingkungan operasional dan kompetensi sumber daya manusia (SDM). Latar belakang penelitian ini berangkat dari tingginya tingkat downtime alat berat yang berdampak langsung terhadap efisiensi operasional dan potensi kerugian finansial yang signifikan di sektor pertambangan. CBM dipandang sebagai strategi pemeliharaan prediktif yang menggunakan sensor dan teknologi IoT untuk mendeteksi potensi kerusakan secara real-time, sehingga dapat meminimalisir downtime tidak terduga. Penelitian ini menggunakan pendekatan kuantitatif dengan metode Structural Equation Modeling – Partial Least Squares (SEM-PLS) yang melibatkan 207 responden dari industri kontraktor pertambangan. Hasil penelitian menunjukkan bahwa CBM berpengaruh positif signifikan terhadap kinerja alat berat. Selain itu, kondisi lingkungan operasional dan kompetensi SDM terbukti memperkuat pengaruh CBM terhadap peningkatan kinerja. Penelitian ini memberikan kontribusi teoritis berupa pengembangan model integratif CBM dan faktor moderasi serta rekomendasi praktis untuk optimalisasi strategi pemeliharaan berbasis kondisi pada lingkungan operasional ekstrem. Variabel endogen Heavy Equipment Performance yang menunjukkan variabilitas Predictive Data Analysis, Maintenance Actions Proactive, Supporting Technology, Operational Environment Conditions dan Human Resource Competency memiliki dampak sebesar 0.723 atau setara 72.3% pada Heavy Equipment Performance. Dan nilai SRMR (Standardized Root Mean Square Residual) adalah 0.033 menunjukkan kecocokan model yang sangat baik. This study aims to analyze the influence of Condition-Based Maintenance (CBM) on the performance of heavy equipment in the coal mining industry, while also assessing the moderating roles of operational environmental conditions and human resource (HR) competencies. The research is motivated by the high level of equipment downtime, which directly impacts operational efficiency and leads to substantial financial losses in mining operations. CBM is considered a predictive maintenance strategy that utilizes sensors and IoT technology to detect potential failures in real-time, thereby minimizing unexpected downtime. A quantitative approach was employed using Structural Equation Modeling – Partial Least Squares (SEM-PLS) with 207 respondents from mining contractor companies. The results indicate that CBM has a significant positive effect on equipment performance. Furthermore, operational environmental conditions and HR competencies were proven to strengthen the effect of CBM on performance improvement. This research contributes theoretically by developing an integrative model of CBM and moderating factors, and offers practical recommendations for optimizing condition-based maintenance strategies in extreme operational environments. Endogenous variables of Heavy Equipment Performance that show the variability of Predictive Data Analysis, Proactive Maintenance Actions, Supporting Technology, Operational Environment Conditions and Human Resource Competence have an impact of 0.723 or equivalent to 72.3% on Heavy Equipment Performance. And the SRMR (Standardized Root Mean Square Residual) value is 0.033 indicating a very good model fit.
Item Type: | Thesis (S2) |
---|---|
NIM/NIDN Creators: | 55323120002 |
Uncontrolled Keywords: | Condition-Based Maintenance (CBM), Kinerja Alat Berat, Kondisi Lingkungan Operasional, Kompetensi Sumber Daya Manusia, Industri Pertambangan, SEM-PLS. Condition-Based Maintenance (CBM), Heavy Equipment Performance, Operational Environmental Conditions, Human Resource Competency, Mining Industry, SEM-PLS. |
Subjects: | 600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 622 Mining and Related Operations/Operasi Pertambangan dan Operasi Terkait 600 Technology/Teknologi > 670 Manufacturing/Manufaktur, Pabrik-pabrik |
Divisions: | Fakultas Teknik > Teknik Industri |
Depositing User: | ZAIRA ELVISIA |
Date Deposited: | 06 Sep 2025 02:08 |
Last Modified: | 06 Sep 2025 02:08 |
URI: | http://repository.mercubuana.ac.id/id/eprint/97461 |
Actions (login required)
![]() |
View Item |