Perbandingan Algoritma Naïve Bayes dan Support Vector Machine (SVM) untuk Analisis Sentimen Persepsi Publik terhadap Revisi Undang-Undang TNI di Media Sosial

MUTHI, MUHAMMAD TSABIT (2025) Perbandingan Algoritma Naïve Bayes dan Support Vector Machine (SVM) untuk Analisis Sentimen Persepsi Publik terhadap Revisi Undang-Undang TNI di Media Sosial. S1 thesis, Universitas Mercu Buana Jakarta - Menteng.

[img] Text (COVER)
41521010168-Muhammad Tsabit Muthi-01 COVER - MUHAMMAD TSABIT MUTHI.pdf

Download (472kB)
[img] Text (BAB I)
41521010168-Muhammad Tsabit Muthi-02 BAB 1 - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (60kB)
[img] Text (BAB II)
41521010168-Muhammad Tsabit Muthi-03 BAB 2 - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (124kB)
[img] Text (BAB III)
41521010168-Muhammad Tsabit Muthi-04 BAB 3 - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (177kB)
[img] Text (BAB IV)
41521010168-Muhammad Tsabit Muthi-05 BAB 4_compressed - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
41521010168-Muhammad Tsabit Muthi-06 BAB 5 - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (37kB)
[img] Text (DAFTAR PUSTAKA)
41521010168-Muhammad Tsabit Muthi-08 DAFTAR PUSTAKA - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (51kB)
[img] Text (LAMPIRAN)
41521010168-Muhammad Tsabit Muthi-09 LAMPIRAN - MUHAMMAD TSABIT MUTHI.pdf
Restricted to Registered users only

Download (901kB)

Abstract

Penelitian ini bertujuan untuk menganalisis sentimen publik terhadap revisi Undang-Undang Tentara Nasional Indonesia (TNI) melalui platform media sosial. Dengan menggunakan algoritma Naïve Bayes dan Support Vector Machine (SVM), penelitian ini mengeksplorasi bagaimana opini masyarakat terbentuk dan diekspresikan di media sosial terkait isu yang sensitif ini. Metode yang digunakan mencakup preprocessing data yang meliputi case folding, tokenisasi, penghapusan stopword, dan stemming. Hasil analisis diharapkan dapat memberikan wawasan yang lebih dalam mengenai persepsi masyarakat terhadap revisi undang-undang TNI, serta implikasinya terhadap kepercayaan publik. Penelitian ini diharapkan dapat menjadi acuan bagi pemerintah dan akademisi dalam memahami dinamika opini publik. This research aims to analyze public sentiment towards the revision of the Indonesian National Armed Forces (TNI) Law through social media platforms. By utilizing Naïve Bayes and Support Vector Machine (SVM) algorithms, this study explores how public opinions are formed and expressed on social media regarding this sensitive issue. The methods employed include data preprocessing, which encompasses case folding, tokenization, stopword removal, and stemming. The results of the analysis are expected to provide deeper insights into public perceptions of the TNI law revision and its implications for public trust. This research is anticipated to serve as a reference for the government and academics in understanding the dynamics of public opinion.

Item Type: Thesis (S1)
NIM/NIDN Creators: 41521010168
Uncontrolled Keywords: Analisis Sentimen, Naïve Bayes, Support Vector Mechine, TF-IDF, BoW, BERT. Sentiment Analysis, Naïve Bayes, Support Vector Machine, TF-IDF, BoW, BERT.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: Maulana Arif Hidayat
Date Deposited: 04 Sep 2025 04:14
Last Modified: 04 Sep 2025 04:14
URI: http://repository.mercubuana.ac.id/id/eprint/97432

Actions (login required)

View Item View Item