PROTOTIPE SISTEM MONITORING CUACA BERBASIS IOT DENGAN PERBANDINGAN FILTER SAVITZKY-GOLAY, KALMAN, DAN MOVING AVERAGE UNTUK MENINGKATKAN AKURASI DATA CUACA

SURYA, WILDAN ADI (2025) PROTOTIPE SISTEM MONITORING CUACA BERBASIS IOT DENGAN PERBANDINGAN FILTER SAVITZKY-GOLAY, KALMAN, DAN MOVING AVERAGE UNTUK MENINGKATKAN AKURASI DATA CUACA. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (932kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (35kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (253kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (351kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (1MB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (34kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (97kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (196kB)

Abstract

Data accuracy is a crucial factor in weather monitoring systems, especially in Internet of Things (IoT) based systems that are susceptible to noise and data anomalies from sensors. This research aims to design and build a prototype of an IoT-based weather monitoring system capable of improving data accuracy through the implementation and comparison of three digital filter methods: Savitzky-Golay, Kalman, and Moving Average. The system utilizes an ESP32 microcontroller as the main processing unit connected to an Weather Station Sensorfor acquiring weather parameters such as temperature, humidity, and air pressure. Raw data from the sensor, along with data processed by the three filters, are sent and stored in separate tables in a database on the `wildan.cloud` hosting server. The accuracy performance of each filter is then evaluated by comparing its results against reference data from the OpenWeather API using the Root Mean Square Error (RMSE) metric. The results show that all three filters significantly reduced errors compared to the original data. Consistently across all parameters, the Kalman Filter demonstrated superior performance with the lowest RMSE values: 1.89 for temperature (°C), 4.12 for humidity (%), and 7.72 for air pressure (hPa). This study concludes that the Kalman Filter is the most reliable and recommended technique for enhancing the accuracy and reliability of low-cost IoT weather stations. Keywords: Weather Monitoring, IoT, ESP32, Savitzky-Golay Filter, Kalman Filter, Moving Average Filter, Data Accuracy. Akurasi data merupakan faktor krusial dalam sistem monitoring cuaca, terutama pada sistem berbasis Internet of Things (IoT) yang rentan terhadap derau dan anomali data dari sensor. Penelitian ini bertujuan untuk merancang dan membangun sebuah prototipe sistem monitoring cuaca berbasis IoT yang mampu meningkatkan akurasi data melalui implementasi dan perbandingan tiga metode filter digital: Savitzky-Golay, Kalman, dan Moving Average. Sistem ini menggunakan mikrokontroler ESP32 sebagai unit pemrosesan utama yang terhubung dengan Weather Station Sensor untuk akuisisi data parameter cuaca seperti suhu, kelembaban, dan tekanan udara. Data mentah dari sensor, beserta data yang telah diproses oleh ketiga filter, dikirim dan disimpan dalam tabel-tabel terpisah pada sebuah database di server hosting`wildan.cloud`. Kinerja akurasi dari setiap filter kemudian dievaluasi dengan membandingkan hasilnya terhadap data rujukan dari OpenWeather API menggunakan metrik Root Mean Square Error (RMSE). Hasil penelitian menunjukkan bahwa ketiga filter berhasil mengurangi error secara signifikan dibandingkan data asli. Secara konsisten di semua parameter, Filter Kalman menunjukkan kinerja superior dengan nilai RMSE terendah, yaitu 1.89 untuk suhu (°C), 4.12 untuk kelembaban (%), dan 7.72 untuk tekanan udara (hPa). Studi ini menyimpulkan bahwa Filter Kalman adalah teknik yang paling andal dan direkomendasikan untuk meningkatkan akurasi dan reliabilitas stasiun cuaca IoT berbiaya rendah. Kata Kunci: Monitoring Cuaca, IoT, ESP32, Filter Savitzky-Golay, Filter Kalman, Filter Moving Average, Akurasi Data.

Item Type: Thesis (S1)
Call Number CD: FT/ELK. 25 062
NIM/NIDN Creators: 41421010029
Uncontrolled Keywords: Monitoring Cuaca, IoT, ESP32, Filter Savitzky-Golay, Filter Kalman, Filter Moving Average, Akurasi Data
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika > 004.6 Interfacing and Communications/Tampilan Antar Muka (Interface) dan Jaringan Komunikasi Komputer > 004.67 Wide Area Network (WAN)/Wide Area Network > 004.678 Internet (World Wide Web)/Internet
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 005 Computer Programmming, Programs, Data/Pemprograman Komputer, Program, Data
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 550 Earth Sciences/Ilmu tentang Bumi > 551 Geology/Geologi > 551.6 Climatology and Weather/Klimatologi, Iklim dan Cuaca
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: khalimah
Date Deposited: 25 Aug 2025 02:10
Last Modified: 25 Aug 2025 02:10
URI: http://repository.mercubuana.ac.id/id/eprint/97049

Actions (login required)

View Item View Item