SURYA, WILDAN ADI (2025) PROTOTIPE SISTEM MONITORING CUACA BERBASIS IOT DENGAN PERBANDINGAN FILTER SAVITZKY-GOLAY, KALMAN, DAN MOVING AVERAGE UNTUK MENINGKATKAN AKURASI DATA CUACA. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (932kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (35kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (253kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (351kB) |
|
![]() |
Text (BAB IV)
05 BAB 4.pdf Restricted to Registered users only Download (1MB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (34kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (97kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (196kB) |
Abstract
Data accuracy is a crucial factor in weather monitoring systems, especially in Internet of Things (IoT) based systems that are susceptible to noise and data anomalies from sensors. This research aims to design and build a prototype of an IoT-based weather monitoring system capable of improving data accuracy through the implementation and comparison of three digital filter methods: Savitzky-Golay, Kalman, and Moving Average. The system utilizes an ESP32 microcontroller as the main processing unit connected to an Weather Station Sensorfor acquiring weather parameters such as temperature, humidity, and air pressure. Raw data from the sensor, along with data processed by the three filters, are sent and stored in separate tables in a database on the `wildan.cloud` hosting server. The accuracy performance of each filter is then evaluated by comparing its results against reference data from the OpenWeather API using the Root Mean Square Error (RMSE) metric. The results show that all three filters significantly reduced errors compared to the original data. Consistently across all parameters, the Kalman Filter demonstrated superior performance with the lowest RMSE values: 1.89 for temperature (°C), 4.12 for humidity (%), and 7.72 for air pressure (hPa). This study concludes that the Kalman Filter is the most reliable and recommended technique for enhancing the accuracy and reliability of low-cost IoT weather stations. Keywords: Weather Monitoring, IoT, ESP32, Savitzky-Golay Filter, Kalman Filter, Moving Average Filter, Data Accuracy. Akurasi data merupakan faktor krusial dalam sistem monitoring cuaca, terutama pada sistem berbasis Internet of Things (IoT) yang rentan terhadap derau dan anomali data dari sensor. Penelitian ini bertujuan untuk merancang dan membangun sebuah prototipe sistem monitoring cuaca berbasis IoT yang mampu meningkatkan akurasi data melalui implementasi dan perbandingan tiga metode filter digital: Savitzky-Golay, Kalman, dan Moving Average. Sistem ini menggunakan mikrokontroler ESP32 sebagai unit pemrosesan utama yang terhubung dengan Weather Station Sensor untuk akuisisi data parameter cuaca seperti suhu, kelembaban, dan tekanan udara. Data mentah dari sensor, beserta data yang telah diproses oleh ketiga filter, dikirim dan disimpan dalam tabel-tabel terpisah pada sebuah database di server hosting`wildan.cloud`. Kinerja akurasi dari setiap filter kemudian dievaluasi dengan membandingkan hasilnya terhadap data rujukan dari OpenWeather API menggunakan metrik Root Mean Square Error (RMSE). Hasil penelitian menunjukkan bahwa ketiga filter berhasil mengurangi error secara signifikan dibandingkan data asli. Secara konsisten di semua parameter, Filter Kalman menunjukkan kinerja superior dengan nilai RMSE terendah, yaitu 1.89 untuk suhu (°C), 4.12 untuk kelembaban (%), dan 7.72 untuk tekanan udara (hPa). Studi ini menyimpulkan bahwa Filter Kalman adalah teknik yang paling andal dan direkomendasikan untuk meningkatkan akurasi dan reliabilitas stasiun cuaca IoT berbiaya rendah. Kata Kunci: Monitoring Cuaca, IoT, ESP32, Filter Savitzky-Golay, Filter Kalman, Filter Moving Average, Akurasi Data.
Actions (login required)
![]() |
View Item |