IMPLEMENTASI IDENTIFIKASI WAJAH UNTUK KEAMANAN PINTU OTOMATIS DENGAN RASPBERRY PI 4

RIPAI, ANDRE (2025) IMPLEMENTASI IDENTIFIKASI WAJAH UNTUK KEAMANAN PINTU OTOMATIS DENGAN RASPBERRY PI 4. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (577kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (151kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (298kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (229kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (554kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (143kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (195kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (4MB)

Abstract

Conventional door security systems that still rely on physical keys have weaknesses such as the risk of burglary, loss, and key duplication. To address these issues, an automatic door security system based on Raspberry Pi 4 was developed, implementing facial recognition technology. The purpose of this system is to enhance security levels while providing ease of access for users. The method involves image processing using OpenCV and the face recognition library. The process begins with capturing facial images via a camera, followed by face detection using the Histogram of Oriented Gradients (HOG) method and face encoding to generate a numerical vector representing unique facial features. This encoding data is then compared with the database to verify identity. If a match is found, the Raspberry Pi 4 sends a control signal to the 5V relay module to activate the solenoid door lock and simultaneously sends an access notification via Telegram for monitoring purposes. The test results show that the system can accurately recognize registered users’ faces with fast response time, even under varying lighting and background conditions. The door can automatically open within approximately 5 seconds after the face is verified, and access notifications are sent to Telegram in real time. Keywords: Door security system, Raspberry Pi 4, face recognition OpenCV, face_recognition, Histogram of Oriented Gradients (HOG), face encoding, solenoid door lock. Sistem keamanan pintu konvensional yang masih mengandalkan kunci fisik memiliki kelemahan seperti risiko pembobolan, kehilangan, serta duplikasi kunci. Untuk mengatasi permasalahan tersebut, dikembangkan sebuah sistem keamanan pintu otomatis berbasis Raspberry Pi 4 yang menerapkan teknologi pengenalan wajah. Tujuan dari sistem ini adalah meningkatkan tingkat keamanan sekaligus memberikan kemudahan akses bagi pengguna. Metode yang digunakan melibatkan pemrosesan citra dengan OpenCV dan pustaka face_recognition. Proses diawali dengan pengambilan citra wajah melalui kamera, kemudian dilakukan deteksi menggunakan metode Histogram of Oriented Gradients (HOG) dan face encoding untuk menghasilkan vektor numerik yang merepresentasikan karakteristik unik wajah. Data encoding tersebut dibandingkan dengan database untuk verifikasi identitas. Jika cocok, Raspberry Pi 4 mengirimkan sinyal kendali ke modul relay 5V untuk mengaktifkan solenoid door lock, serta mengirimkan notifikasi akses melalui Telegram sebagai bentuk pemantauan. Hasil pengujian menunjukkan sistem mampu mengenali wajah pengguna yang telah terdaftar secara akurat dengan waktu respons cepat, meskipun dalam kondisi pencahayaan dan latar belakang yang bervariasi. Pintu dapat terbuka otomatis dalam waktu sekitar 5 detik setelah wajah terverifikasi, dan notifikasi akses terkirim ke Telegram secara real-time. Kata Kunci: Sistem keamanan pintu, Raspberry Pi 4, pengenalan wajah, OpenCV, face_recognition, Histogram of Oriented Gradients (HOG), face encoding, solenoid door lock

Item Type: Thesis (S1)
Call Number CD: FT/ELK. 25 059
NIM/NIDN Creators: 41421010017
Uncontrolled Keywords: Sistem keamanan pintu, Raspberry Pi 4, pengenalan wajah, OpenCV, face_recognition, Histogram of Oriented Gradients (HOG), face encoding, solenoid door lock
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 003 Systems/Sistem-sistem > 003.1 System Identification/Identifikasi Sistem
300 Social Science/Ilmu-ilmu Sosial > 360 Social Problems and Services/Permasalahan dan Kesejahteraan Sosial > 363 Other Social Problems and Services/Masalah dan Layanan Sosial Lainnya > 363.1 Public Safety Programs/Program Keamanan Umum
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: khalimah
Date Deposited: 25 Aug 2025 01:47
Last Modified: 25 Aug 2025 01:47
URI: http://repository.mercubuana.ac.id/id/eprint/97046

Actions (login required)

View Item View Item