PERANCANGAN ROBOT PEMOTONG RUMPUT OTOMATIS DENGAN ESP32-CAM BERBASIS INTERNET OF THINGS

WIJAYA, SASTRA (2025) PERANCANGAN ROBOT PEMOTONG RUMPUT OTOMATIS DENGAN ESP32-CAM BERBASIS INTERNET OF THINGS. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 COVER.pdf

Download (453kB) | Preview
[img] Text (BAB I)
02 BAB 1.pdf
Restricted to Registered users only

Download (61kB)
[img] Text (BAB II)
03 BAB 2.pdf
Restricted to Registered users only

Download (265kB)
[img] Text (BAB III)
04 BAB 3.pdf
Restricted to Registered users only

Download (388kB)
[img] Text (BAB IV)
05 BAB 4.pdf
Restricted to Registered users only

Download (376kB)
[img] Text (BAB V)
06 BAB 5.pdf
Restricted to Registered users only

Download (121kB)
[img] Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (122kB)
[img] Text (LAMPIRAN)
08 LAMPIRAN.pdf
Restricted to Registered users only

Download (204kB)

Abstract

This design aims to deliver an Internet of Things (IoT)-based automatic lawn mower robot that can be remotely controlled and monitored using the ESP32-CAM module. The system is developed to simplify garden maintenance with high efficiency, reduce dependence on manual labor, and enhance user safety through application-based control. A real-time battery monitoring feature is also integrated to ensure optimal and continuous operation of the robot. The system’s workflow includes mechanical, electrical, and software design. The ESP32-CAM module serves as both the main controller and visual camera, while the Blynk application acts as the remote control interface. Navigation relies on the HC-SR04 ultrasonic sensor for obstacle detection, while the Wemos D1 Mini and INA219 sensor are used for the battery monitoring system connected to Google Spreadsheets. Testing covered lawn cutting at various grass heights and soil moisture levels, WiFi connectivity stability, and battery power consumption measurements. The results show that the robot can cut grass up to ≤10 cm high with 95– 98% efficiency and an average time of 4–6 minutes for a 2×2 meter area. For grass heights of 15–20 cm, cutting time increases to 8–10 minutes with 82–90% efficiency. WiFi connectivity remains stable up to 20 meters LOS with an average latency of 0.35–0.46 seconds, while in non-LOS conditions at 30 meters, delays reach 2.45 seconds. The battery monitoring system recorded an average power consumption of 14.25–15.01 W, with the remaining battery capacity sustaining approximately 60 minutes of operation. Keywords: Lawn Mower Robot, Internet of Things, ESP32-CAM, Blynk, Battery Monitoring Perancangan ini bertujuan untuk menghadirkan robot pemotong rumput otomatis berbasis Internet of Things (IoT) yang dapat dikendalikan dan dipantau secara jarak jauh melalui modul ESP32-CAM. Sistem dikembangkan untuk mempermudah proses pemeliharaan taman dengan tingkat efisiensi yang tinggi, mengurangi ketergantungan pada tenaga kerja manual, serta meningkatkan keselamatan pengguna melalui pengendalian berbasis aplikasi. Fitur pemantauan baterai secara real-time juga diintegrasikan guna memastikan robot beroperasi secara optimal sepanjang waktu. Metode kerja sistem meliputi perancangan mekanik, elektrik, dan perangkat lunak. Modul ESP32-CAM berfungsi sebagai pusat kendali sekaligus kamera visual, sementara aplikasi Blynk digunakan sebagai antarmuka pengendalian jarak jauh. Navigasi mengandalkan sensor ultrasonik HC-SR04 untuk mendeteksi hambatan, sedangkan Wemos D1 Mini bersama sensor INA219 digunakan untuk sistem monitoring baterai yang terhubung ke Google Spreadsheets. Pengujian dilakukan mencakup uji pemotongan rumput pada berbagai tinggi dan kelembapan, uji konektivitas WiFi, serta uji konsumsi daya baterai. Hasil pengujian menunjukkan robot mampu memotong rumput setinggi ≤10 cm dengan efisiensi 95–98% dan waktu rata-rata 4–6 menit untuk area 2×2 meter. Pada tinggi rumput 15–20 cm, waktu meningkat hingga 8–10 menit dengan efisiensi 82–90%. Koneksi WiFi stabil hingga jarak 20 meter LOS dengan latensi rata-rata 0,35–0,46 detik, sedangkan pada kondisi non-LOS jarak 30 meter terjadi delay hingga 2,45 detik. Sistem monitoring baterai mencatat konsumsi daya ratarata 14,25–15,01 W dengan sisa kapasitas baterai bertahan ±60 menit operasi. Kata Kunci: Robot Pemotong Rumput, Internet of Things, ESP32-CAM, Blynk, Monitoring Baterai.

Item Type: Thesis (S1)
Call Number CD: FT/ELK. 25 041
NIM/NIDN Creators: 41420120075
Uncontrolled Keywords: Robot Pemotong Rumput, Internet of Things, ESP32-CAM, Blynk, Monitoring Baterai.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika > 004.6 Interfacing and Communications/Tampilan Antar Muka (Interface) dan Jaringan Komunikasi Komputer > 004.67 Wide Area Network (WAN)/Wide Area Network > 004.678 Internet (World Wide Web)/Internet
600 Technology/Teknologi > 620 Engineering and Applied Operations/Ilmu Teknik dan operasi Terapan > 621 Applied Physics/Fisika terapan > 621.3 Electrical Engineering, Lighting, Superconductivity, Magnetic Engineering, Applied Optics, Paraphotic Technology, Electronics Communications Engineering, Computers/Teknik Elektro, Pencahayaan, Superkonduktivitas, Teknik Magnetik, Optik Terapan, Tekn
Divisions: Fakultas Teknik > Teknik Elektro
Depositing User: khalimah
Date Deposited: 21 Aug 2025 03:18
Last Modified: 21 Aug 2025 03:18
URI: http://repository.mercubuana.ac.id/id/eprint/96932

Actions (login required)

View Item View Item