IMPLEMENTASI ALGORITMA NAIVE BAYES DAN RANDOM FOREST UNTUK KLASIFIKASI PENYAKIT DIABETES MELITUS PADA KOTA BANDUNG

BUDIARGO, IBNU (2025) IMPLEMENTASI ALGORITMA NAIVE BAYES DAN RANDOM FOREST UNTUK KLASIFIKASI PENYAKIT DIABETES MELITUS PADA KOTA BANDUNG. S1 thesis, Universitas Mercu Buana Jakarta.

[img]
Preview
Text (HAL COVER)
01 Cover.pdf

Download (343kB) | Preview
[img] Text (BAB I)
02 Bab 1.pdf
Restricted to Registered users only

Download (35kB)
[img] Text (BAB II)
03 Bab 2.pdf
Restricted to Registered users only

Download (260kB)
[img] Text (BAB III)
04 Bab 3.pdf
Restricted to Registered users only

Download (45kB)
[img] Text (BAB IV)
05 Bab 4.pdf
Restricted to Registered users only

Download (489kB)
[img] Text (BAB V)
06 Bab 5.pdf
Restricted to Registered users only

Download (30kB)
[img] Text (DAFTAR PUSTAKA)
07 Daftar Pustaka.pdf
Restricted to Registered users only

Download (96kB)
[img] Text (LAMPIRAN)
08 Lampiran.pdf
Restricted to Registered users only

Download (473kB)

Abstract

Diabetes mellitus is a disease that continues to increase every year. As a city with a large population, the city of Bandung faces serious challenges related to the high number of diabetes cases. This study focuses on the development of a diabetes mellitus risk prediction model using the Naive Bayes algorithm based on epidemiological data from the Bandung City area. This algorithm was chosen because of its ability to generate probabilistic classifications quickly and efficiently, especially in medical applications. Model evaluation is carried out through various performance indicators, such as accuracy, precision, recall, F1- score, and AUC (Area Under Curve), to ensure the effectiveness of the resulting classification. In addition, this study identifies health services. The results of this study are expected to make a significant contribution to the early detection and management of diabetes, as well as become the basis for the development of a for health workers in the city of Bandung. Keywords: Diabetes mellitus, Naive Bayes, risk prediction, Bandung City, classification, data mining, model evaluation Diabetes melitus merupakan penyakit yang terus meningkat setiap tahun. Sebagai kota dengan jumlah penduduk yang besar, Kota Bandung menghadapi tantangan serius terkait tingginya kasus diabetes. Penelitian ini berfokus pada pengembangan model prediksi risiko diabetes melitus menggunakan algoritma Naive Bayes berdasarkan data epidemiologis dari wilayah Kota Bandung. Algoritma ini dipilih karena kemampuannya dalam menghasilkan klasifikasi probabilistik secara cepat dan efisien, khususnya dalam aplikasi medis.Evaluasi model dilakukan melalui berbagai indikator kinerja, seperti akurasi, precision, recall, F1-score, dan AUC (Area Under Curve), untuk memastikan efektivitas klasifikasi yang dihasilkan. Selain itu, penelitian ini mengidentifikasi terhadap layanan kesehatan. Hasil penelitian ini diharapkan memberikan kontribusi signifikan terhadap deteksi dini dan manajemen diabetes, sekaligus menjadi dasar bagi pengembangan sistem pendukung keputusan bagi tenaga kesehatan di Kota Bandung. Kata Kunci: Diabetes melitus, Naive Bayes, prediksi risiko, Kota Bandung, klasifikasi, data mining, evaluasi model.

Item Type: Thesis (S1)
Call Number CD: FIK/INFO. 25 146
NIM/NIDN Creators: 41521010120
Uncontrolled Keywords: Diabetes melitus, Naive Bayes, prediksi risiko, Kota Bandung, klasifikasi, data mining, evaluasi model.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 006 Special Computer Methods/Metode Komputer Tertentu > 006.3 Artificial Intelligence/Kecerdasan Buatan > 006.31 Machine Learning/Pembelajaran Mesin
500 Natural Science and Mathematics/Ilmu-ilmu Alam dan Matematika > 510 Mathematics/Matematika > 518 Numerical Analysis/Analisis Numerik, Analisa Numerik > 518.1 Algorithms/Algoritma
600 Technology/Teknologi > 610 Medical, Medicine, and Health Sciences/Ilmu Kedokteran, Ilmu Pengobatan dan Ilmu Kesehatan > 615 Pharmacology and Therapeutics/Farmakologi dan Terapi Farmakologi
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: khalimah
Date Deposited: 11 Aug 2025 07:07
Last Modified: 11 Aug 2025 07:07
URI: http://repository.mercubuana.ac.id/id/eprint/96767

Actions (login required)

View Item View Item