PERBANDINGAN AKURASI ALGOTIMA KLASIFIKASI DECISION TREE DAN K-NEAREST NEIGHBOR PADA DATA INDEKS STANDAR PENCEMAR UDARA (ISPU) JAKARTA

Fadillah, Ahmad Hoerul (2025) PERBANDINGAN AKURASI ALGOTIMA KLASIFIKASI DECISION TREE DAN K-NEAREST NEIGHBOR PADA DATA INDEKS STANDAR PENCEMAR UDARA (ISPU) JAKARTA. S1 thesis, Universitas Mercu Buana Menteng.

[img]
Preview
Text (Cover)
41520010207-Ahmad Hoerul Fadillah-01 Cover_removed - Ahmad Hoerul Fadilah.pdf

Download (1MB) | Preview
[img] Text (BAB I)
41520010207-Ahmad Hoerul Fadillah-02 Bab 1 - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (465kB)
[img] Text (BAB II)
41520010207-Ahmad Hoerul Fadillah-03 Bab 2 - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (344kB)
[img] Text (BAB III)
41520010207-Ahmad Hoerul Fadillah-04 Bab 3 - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (463kB)
[img] Text (BAB IV)
41520010207-Ahmad Hoerul Fadillah-05 Bab 4 - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (923kB)
[img] Text (BAB V)
41520010207-Ahmad Hoerul Fadillah-06 Bab 5 - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (334kB)
[img] Text (Datar Pustaka)
41520010207-Ahmad Hoerul Fadillah-08 Daftar Pustaka - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (287kB)
[img] Text (Lampiran)
41520010207-Ahmad Hoerul Fadillah-09 Lampiran - Ahmad Hoerul Fadilah.pdf
Restricted to Registered users only

Download (1MB)

Abstract

Kualitas udara di Jakarta menjadi isu lingkungan yang signifikan akibat tingginya tingkat polusi yang berdampak negatif pada kesehatan masyarakat. Penelitian ini bertujuan untuk membandingkan akurasi dua algoritma machine learning, yaitu Decision Tree dan K-Nearest Neighbor (KNN), dalam mengklasifikasikan data Indeks Standar Pencemar Udara (ISPU) di DKI Jakarta. Data yang digunakan adalah data ISPU tahun 2023 yang bersumber dari Portal Satu Data Indonesia, dengan parameter polutan meliputi PM10, SO2, CO, O3, dan NO2. Metodologi penelitian ini mencakup beberapa tahapan, yaitu pengumpulan data, pra-pemrosesan data yang meliputi pembersihan, penanganan data yang hilang, dan normalisasi menggunakan Min-Max Scaling, pembagian data menjadi data latih dan data uji, pelatihan model, serta evaluasi menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa algoritma Decision Tree memiliki tingkat akurasi yang lebih unggul, yaitu sebesar 99%, dibandingkan dengan algoritma K-Nearest Neighbor yang mencapai akurasi 94%. Berdasarkan hasil tersebut, dapat disimpulkan bahwa Decision Tree merupakan model yang lebih baik dan akurat untuk klasifikasi data ISPU di DKI Jakarta. Air quality in Jakarta has become a significant environmental issue due to high levels of pollution that have a negative impact on public health. This study aims to compare the accuracy of two machine learning algorithms, namely Decision Tree and K-Nearest Neighbor (KNN), in classifying Air Pollution Standard Index (ISPU) data in DKI Jakarta. The data used is the 2023 ISPU data sourced from the Satu Data Indonesia Portal, with pollutant parameters including PM10, SO2, CO, O3, and NO2. This research methodology includes several stages, namely data collection, data pre-processing which includes cleaning, handling missing data, and normalization using Min-Max Scaling, dividing data into training data and test data, model training, and evaluation using accuracy, precision, recall, and F1-score metrics. The results show that the Decision Tree algorithm has a superior accuracy rate, which is 99%, compared to the K-Nearest Neighbor algorithm which achieves 94% accuracy. Based on these results, it can be concluded that Decision Tree is a better and more accurate model for ISPU data classification in DKI Jakarta.

Item Type: Thesis (S1)
NIM/NIDN Creators: 41520010207
Uncontrolled Keywords: Klasifikasi, Indeks Standar Pencemar Udara (ISPU), Decision Tree, K-Nearest Neighbor, Kualitas Udara, Machine Learning. Classification, Air Pollution Standard Index (ISPU), Decision Tree, K-Nearest Neighbor, Air Quality, Machine Learning.
Subjects: 000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
000 Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 000. Computer Science, Information and General Works/Ilmu Komputer, Informasi, dan Karya Umum > 004 Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika > 004.2 Systems Analysis and Computer Design, Computer Architecture, Computer Performance Evaluation/Sistem Analis dan Desain Komputer, Arsitektur Komputer, Evaluasi Daya Guna dan Performa Komputer
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: ZAIRA ELVISIA
Date Deposited: 07 Aug 2025 03:53
Last Modified: 07 Aug 2025 03:53
URI: http://repository.mercubuana.ac.id/id/eprint/96637

Actions (login required)

View Item View Item