PRAYOGA, MUHAMMAD NAUFAL (2025) ANALISIS POLITIK DAN EKONOMI SERTA DUKUNGAN TERHADAP KEBERLANJUTAN IKN BERDASARKAN DATA X MENGGUNAKAN MODEL BERTOPIC. S1 thesis, Universitas Mercu Buana Jakarta.
|
Text (HAL COVER)
01 COVER.pdf Download (660kB) | Preview |
|
![]() |
Text (BAB I)
02 BAB 1.pdf Restricted to Registered users only Download (101kB) |
|
![]() |
Text (BAB II)
03 BAB 2.pdf Restricted to Registered users only Download (282kB) |
|
![]() |
Text (BAB III)
04 BAB 3.pdf Restricted to Registered users only Download (121kB) |
|
![]() |
Text (BBA IV)
05 BAB 4.pdf Restricted to Registered users only Download (568kB) |
|
![]() |
Text (BAB V)
06 BAB 5.pdf Restricted to Registered users only Download (39kB) |
|
![]() |
Text (DAFTAR PUSTAKA)
07 DAFTAR PUSTAKA.pdf Restricted to Registered users only Download (110kB) |
|
![]() |
Text (LAMPIRAN)
08 LAMPIRAN.pdf Restricted to Registered users only Download (711kB) |
Abstract
he development of Indonesia’s new capital city (IKN Nusantara) has sparked diverse public opinions, particularly on social media platforms such as Twitter. This study aims to analyze and categorize the main topics within public discourse regarding IKN using the BERTopic topic modeling method. The analysis began with collecting relevant tweets, followed by comprehensive preprocessing steps including text cleaning, normalization, tokenization, and lemmatization. Sentiment labeling was conducted using a lexicon-based approach, classifying tweets into positive and negative categories. Each sentiment category was then analyzed using BERTopic, which integrates BERT embeddings, UMAP for dimensionality reduction, and HDBSCAN for clustering. The results show that BERTopic effectively identifies dominant themes such as optimism toward infrastructure development and environmental sustainability (positive sentiment), as well as concerns over funding, transparency, and social impacts (negative sentiment). This research contributes to a structured understanding of public perception and provides strategic insights for evaluating national development policies. Kata kunci: BERTopic, Topic Modeling, Sentiment Analysis, New Capital City (IKN), Social Media, X, Public Opinion Pembangunan Ibu Kota Negara (IKN) Nusantara menimbulkan beragam opini di masyarakat, terutama yang tercermin melalui media sosial seperti Twitter. Penelitian ini bertujuan untuk menganalisis dan mengelompokkan topik-topik utama dalam opini publik mengenai IKN menggunakan metode topic modeling BERTopic. Proses analisis diawali dengan pengumpulan data tweet terkait IKN, diikuti oleh tahapan preprocessing yang mencakup pembersihan teks, normalisasi, tokenisasi, dan lemmatisasi. Sentimen pada tweet ditentukan menggunakan pendekatan lexicon-based dan diklasifikasikan ke dalam dua kategori: positif dan negatif. Selanjutnya, masing-masing kategori dianalisis secara tematik menggunakan BERTopic, yang mengintegrasikan embedding dari BERT, reduksi dimensi UMAP, dan pengelompokan HDBSCAN. Hasil penelitian menunjukkan bahwa BERTopic mampu mengidentifikasi berbagai isu dominan seperti optimisme terhadap pembangunan infrastruktur dan keberlanjutan lingkungan (sentimen positif), serta kekhawatiran atas pembiayaan, transparansi, dan dampak sosial (sentimen negatif). Studi ini memberikan kontribusi dalam memahami persepsi publik secara terstruktur dan dapat digunakan sebagai masukan strategis dalam evaluasi kebijakan pembangunan IKN. Kata kunci: BERTopic, Topic Modeling, Analisis Sentimen, Ibu Kota Negara (IKN), Media Sosial, X, Opini Publik
Actions (login required)
![]() |
View Item |